Skip to main content

Pedodiversity

  • Chapter
  • First Online:
The Soils of Italy

Abstract

Pedodiversity of Italy, that is, the diversity of soil genetic types, their geographic distribution, and the statistical variability of their properties, is depicted by means of maps and information stored in the national soil database. Soil regions on hills are the most lithologically and climatically variable environments, and host the greatest soil variability and endemisms. A vast majority of the WRB reference soil groups (25 out of 32), as well as soil orders of Soil Taxonomy (10 out of 12), are represented in the main Italian soil typological units (STUs), but the clear skewness and lognormal distribution of STUs demonstrate the utmost endemic nature of many Italian soils. In particular, more than a fourth of STUs belongs to Cambisols, more than a half to only four reference soil groups, and 88 % to nine RSGs, while the remaining 16 RSGs are represented in 12 % of STUs. A similar trend is depicted by considering single soil profile classification, although a larger number of main soil types are represented as soil profiles than as STUs. Ferralsols (Oxisols for Soil Taxonomy) and Durisols are the only main kind of soils that have not yet been found in Italy. Likewise RSGs, the distribution of WRB qualifiers shows an evident concentration in relatively few cases, followed by a long tail. In particular, 138 out of the 180 types foreseen by WRB are represented in Italy. Thus, it is possible to say that in Italy, there is about three quarters of the global pedodiversity. Although the most common qualifiers (that is, Calcaric, Haplic, Skeletic, Eutric) are all related to the nature of parent material and to incipient pedogenesis, a second group (namely Chromic, Calcic, Stagnic, and Luvic) indicates the main soil-forming mechanisms that typify current Italian pedogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The DBs are maintained by the Research centre for Agrobiology and Pedology of the Agriculture Research Council (CRA-ABP). Releases are downloadable from http://abp.entecra.it/soilmaps/en/home.html.

  2. 2.

    In most cases, this was a consequence of an incomplete translation from Soil Taxonomy to WRB classification.

  3. 3.

    In reading the report of the derived profile, it must be paid attention to the number of cases. For instance, the presence of an E horizon in the Haplic Luvisols (Chromic) has been recorded in a relatively small proportion of sites (Fig. 6.23). This can be due to the different land use of the soils belonging to this taxon, since under agriculture the E horizon is seldom preserved. Similarly, in the description of site characteristics, it should be considered the number of sites that were described and stored for the specific characteristic or quality. For instance, in the mentioned taxon, the presence of the water table was only recorded in 25 cases, but in all of them it was absent, therefore we can assume that water table is usually absent. Also mean analytical values of a horizon may come from different amounts of cases, in dependence of the presence of the horizon as well as of the effective analysis of the sample. The Cr horizon of the example, in particular, shows a marked increase of the sand content; however, only two sites were analysed, both belonging to Haplic Luvisols (Chromic) formed on calcarenites. Therefore, the textural value of Cr is representative only of this kind of Haplic Luvisols (Chromic).

  4. 4.

    see Chap. 2 for details about the climatic information.

  5. 5.

    SD = standard deviation, n = sample, N = population; Available water capacity mean estimated value on horizons up to the potential rooting depth (Saxton and Rawls, 2006).

    Crusting risk function of silt and organic matter content (Costantini et al. 2007).

    Compaction risk function of clay, silt, organic matter content (Vignozzi et al. 2007; Costantini et al. 2007).

    Hydrologic group function of clay, sand, silt, bulk density (when not determined, estimated according to Pellegrini et al. (2007) BD [(clay)2; (sand); (organic matter content)-2]), potential rooting depth and water table depth. (United States Department of Agriculture 2007).

    Purifying capacity function of coarse fragments, cation-exchange capacity, potential rooting depth, pH (Region Emilia Romagna 1995).

    Low. Depth = Lower depth (cm); Tex. Cl. = texture class: C = clay, CL = clay loam, FSL = fine sandy loam, L = loam, LS = loamy sand, S = sand, SC = sandy clay, SCL = sandy clay loam, SIC = silty clay, SICL = silty clay loam, SI = silt, SIL = silt loam, SL = sandy loam; Permeability mean hydraulic conductivity from field estimation class mean values; COLE coefficient of linear extensibility; Field Capacity and Wilting Point soil water content at 33 kPa and 1,500 kPa (pressure plate apparatus); CEC = Cation-Exchange Capacity; ESP = Exchangeable Sodium Percentage; Salinity electrical conductivity of a soil water 1:2.5 solution (approximately 1/4 of saturated paste).

    Extractable Fe oxalate oxalate extractable iron, Extractable Fe pyr. pyrophosphate extractable iron, Extractable Fe total: total extractable iron, Extractable Fe pyr.—ox. difference of pyrophosphate extractable iron and oxalate extractable iron, Extractable Al oxalate oxalate extractable aluminium, Extractable Al total total extractable aluminium, Al + 0.5Fe oxalate sum of oxalate extractable aluminium and half of oxalate extractable iron; oxalate extractable Si oxalate extractable silica, pH NaF sodium fluoride pH, P ads. phosphate retention.

  6. 6.

    A salic horizon must have: (1) averaged over its depth at some time of the year, an electrical conductivity of the saturation extract (ECe) of 15 dS m−1 or more at 25 °C, or an ECe of 8 dS m−1 or more at 25 °C if the pH (H2O) of the saturation extract is 8.5 or more; and (2) averaged over its depth at some time of the year, a product of thickness (in centimetres) and ECe (in dS m−1) of 450 or more; and (3) a thickness of 15 cm or more.

References

  • Ajmone-Marsan F, Pagliai M, Pini R (1994) Identification and properties of fragipan soils in the Piemonte region of Italy. Soil Sci Soc Am J 58(3):891–900

    Google Scholar 

  • Ajmone-Marsan F, Torrent J (1989) Fragipan bonding by silica and iron oxides in soils from northwestern Italy. Soil Sci Soc Am J 53:1140–1145

    Google Scholar 

  • Alexander D (1982) Difference between ‘calanchi’ and ‘biancane’ badlands in Italy. Badland Geomorphology Piping, pp 71–87

    Google Scholar 

  • Antonellini M, Mollema PN (2010) Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna. Italy Ecol Eng 36(9):1201–1211

    Google Scholar 

  • Baize D, Girard MC (1998) A sound reference base for soils: the “Re’férentiel pédologique”. INRA, Paris

    Google Scholar 

  • Barbera V, Raimondi S, Egli M, Plötze M (2008) The influence of weathering processes on labile and stable organic matter in Mediterranean volcanic soils. Geoderma 143(1–2):191–205

    CAS  Google Scholar 

  • Basile A, Mele G, Terribile F (2003) Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998. Geoderma 117(3–4):331–346

    Google Scholar 

  • Bazzoffi P, Abbattista F, Vanino S, Pellegrini S (2006) Impact of land levelling for vineyard plantation on soil degradation in Italy Bollettino della Societa Geologica Italiana. Supplemento 6:191–199

    Google Scholar 

  • Bini C, Gaballo S (2006) Pedogenic trends in anthrosols developed in sulfidic mine spoils: A case study in the Temperino mine archaeological area (Campiglia Marittima, Tuscany, Italy). Quatern Int 156–157 (Special Issue):70–78

    Google Scholar 

  • Bini C, Garlato A (1999) Advance in the mineralogy and geochemistry of Italian Terra Rossa. In: 6th international meeting on soils with mediterranean type of climate. Extended abstracts. Barcelona, pp 694–697

    Google Scholar 

  • Bini C, Mondini C (1992) Deep weathering features in paleosols from alluvial deposits (“Terra Rossa”—like) in the Friuli piedmont area (Italy). Mineral Petrogr Acta 35:1–21

    Google Scholar 

  • Bini C, De Siena C (1995) Evolution of the soil cover of the central Italy ophiolite belt. Eurasian Soil Sci 27(4):24–28

    Google Scholar 

  • Boero V, Schwertmann U (1989) Iron oxide mineralogy of Terra Rossa and its genetic implications. Geoderma 44:319–327

    CAS  Google Scholar 

  • Boero V, Premoli A, Melis P, Barberis E, Arduino E (1992) Influence o f climate on the iron oxide mineralogy o f Terra Rossa. Clays Clay Miner 40(1):8–13

    CAS  Google Scholar 

  • Bonifacio E, Zanini E, Boero V, Franchini AM (1997) Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma 75(1–2):33–51

    CAS  Google Scholar 

  • Bronger A, Bruhn-Lobin N (1997) Paleopedology of Terra Rossa-Rhodoxeralfs from quaternary calcarenites in NW Morocco. Catena 28:279–296

    CAS  Google Scholar 

  • Buondonno C, Ermice A, Buondonno A, Murolo M, Pugliano ML (1998) Human-influenced soils from an iron and steel works in Naples, Italy. Soil Sci Soc Am J 62(3):694–700

    CAS  Google Scholar 

  • Busoni E, Salvador Sanchis P, Calzolari C, Romagnoli A (1995) Mass movement and erosion hazard patterns by multivariate analysis of landscape integrated data: the Upper Orcia River Valley (Siena, Italy) case. Catena 25(1–4):169–185

    Google Scholar 

  • Calzolari C, Ungaro F (1998) Geomorphic features of a badland (biancane) area (Central Italy): Characterisation, distribution and quantitative spatial analysis. Catena 31(4):237–256

    Google Scholar 

  • Calzolari C, Ungaro F (2012) Predicting shallow water table depth at regional scale from rainfall and soil data. J Hydrol 414–415:374–387

    Google Scholar 

  • Camporese M, Ferraris S, Putti M, Salandin P, Teatini P (2006) Hydrological modeling in swelling/shrinking peat soils. Water Resour Res 42(6):1–15

    Google Scholar 

  • Camporese M, Putti M, Salandin P, Teatini P (2008) Spatial variability of CO2 efflux in a drained cropped peatland south of Venice, Italy. J Geophys Res G: Biogeosciences 113(4):G04018

    Google Scholar 

  • Capolongo D, Pennetta L, Piccarreta M, Fallacara G, Boenzi F (2008) Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semi-arid area of Basilicata (Southern Italy). Earth Surf Proc Land 33(3):364–379

    Google Scholar 

  • Capotorti G, Guida D, Siervo V, Smiraglia D, Blasi C (2011) Ecological classification of land and conservation of biodiversity at the national level: The case of Italy. Biol Conserv 147(1):174–183 http://dx.doi.org/10.1016/j.biocon.2011.12.028

  • Carbognin L, Gambolati G, Putti M, Rizzetto F, Teatini P, Tosi L (2006) Soil contamination and land subsidence raise concern in the Venice watershed, Italy. WIT Trans Ecol Environ 99:691–700

    Google Scholar 

  • Carnicelli S (1989) Calcrete accumulation in the soils and superficial formations of southern Italy. Mediterranee 68:51–59

    Google Scholar 

  • Carnicelli S, Mirabella A, Cecchini G, Sanesi G (1997) Weathering of chlorite to a low-charge expandable mineral in a spodosol on the apennine mountains, Italy. Clays Clay Miner 45(1):28–41

    CAS  Google Scholar 

  • Castrignanò A, Buttafuoco G, Puddu R (2008) Multi-scale assessment of the risk of soil salinization in an area of south-eastern Sardinia (Italy). Precis Agric 9(1–2):17–31

    Google Scholar 

  • Cecchini G, Carnicelli S, Mirabella A, Mantelli F, Sanesi G (2003) Soil conditions under a fagus sylvatica CONECOFOR stand in central Italy: an integrated assessment through combined solid phase and solution studies. J Limnol 61(1):36–45

    Google Scholar 

  • Certini G, Fernández Sanjurjo MJ, Corti G, Ugolini FC (2001) The contrasting effect of broom and pine on pedogenic processes in volcanic soils (Mt. Etna, Italy). Geoderma 102(3–4):239–254

    Google Scholar 

  • Certini G, Ugolini F, Taina I, Bolla G, Corti G, Tescari F (2007) Clues to the genesis of a discontinuously distributed fragipan in the northern Apennines, Italy. Catena 69(2):161–169

    Google Scholar 

  • Chiarucci A, De Dominicis V, Ristori J, Calzolari C (1995) Biancana badland vegetation in relation to morphology and soil in Orcia valley, central Italy. Phytocoenologia 25:69–87

    Google Scholar 

  • Colombo C, Torrent J (1991) Relationships between aggregation and iron oxides in Terra Rossa soils from southern Italy. Catena 18(1):51–59

    CAS  Google Scholar 

  • Costantini EAC (1993) Surface morphology and thinning grade effect on soils of a Calabrian Pine in the Sila mountain (Calabria, Italy). Geografia Fisica e Dinamica del Quaternario 16(1):29–35

    Google Scholar 

  • Costantini EAC (2007) Linee guida dei metodi di rilevamento e informatizzazione dei dati pedologici. CRA_ABP, Firenze, Italia, p 296 (In Italian, with English summary) (On-line http://abp.entecra.it/soilmaps/en/downloads.html)

  • Costantini EAC (2009) Manual of methods for soil and land evaluation. Science Publisher, Enfield (NH), p 549

    Google Scholar 

  • Costantini EAC, Barbetti R, L’Abate G (2007) Soils of Italy: status, problems and solutions. In: Zdruli P, Trisorio Liuzzi G (eds) Status of mediterranean soil resources: actions needed to support their sustainable use. Mediterranean Conference Proceedings, Tunis, Tunisia, pp 165–186

    Google Scholar 

  • Costantini EAC, Damiani D (2004) Clay minerals and the development of quaternary soils in central Italy. Revista Mexicana de Ciencias Geologicas 21:144–159

    Google Scholar 

  • Costantini EAC, Gardin L, Pagliai M (1999) Advances in soil survey, monitoring and applications in Italy. In: Bullock P, Jones RJA, Montanarella L (eds) Soil resources of Europe. JRC, Ispra (VA), pp 103–109

    Google Scholar 

  • Costantini EAC, Barbetti R (2008) Environmental and visual impact analysis of viticulture and Olive Tree cultivation in the province of Siena (Italy). Eur J Agron 28:412–426

    Google Scholar 

  • Costantini EAC, Bucelli P, Priori S (2011) Quaternary landscape history determines the soil functional characters of terroir. Quatern Int. doi:10.1016/j.quaint.2011.08.021

    Google Scholar 

  • Costantini EAC, L’Abate G (2009) The soil cultural heritage of Italy: geodatabase, maps, and pedodiversity evaluation. Quatern Int 209:142–153

    Google Scholar 

  • Costantini EAC, Lulli L, Bidini D, Napoli R, Castellani F (1992) Karst landforms and soils of the Poggio del Comune relief (central Italy). In: 2nd International conference geomorphology, 1989, proceeding of the karst-symposium—Blaubeuren. Tuebingen Geo. Studien vol 109. pp 83–130

    Google Scholar 

  • Costantini EAC, Napoli R, Bragato G (1996) Properties and geographic relevance of fragipan and other close-packed horizons in a non-glaciated Mediterranean region. Geografia Fisica e Dinamica Quaternaria 19(1):29–45

    Google Scholar 

  • Costantini EAC, Pellegrini S, Bucelli P, Barbetti R, Campagnolo S, Storchi P, Magini S, Perria R (2010) Mapping suitability for Sangiovese wine by means of δ13C and geophysical sensors in soils with moderate salinity. Eur J Agron 33:208–217

    Google Scholar 

  • Costantini EAC, Priori S (2007) Pedogenesis of plinthite during early Pliocene in the Mediterranean environment. Case study of a buried paleosol at Podere Renieri, central Italy. Catena 71(3):425–443

    CAS  Google Scholar 

  • Cremaschi M, Busacca A (1994) Deep soils on stable or slowly aggrading surfaces: time versus climate as soil-forming factors. The Ferretto-type paleosol, a case study: the Crocetta profile (Gazzola, Piacenza, northern Italy). Geografia Fisica e Dinamica Quaternaria 17(1):19–28

    Google Scholar 

  • Cremaschi M, Van Vliet-Lanoë B (1990) Traces of frost activity and ice segregation in Pleistocene loess deposits of northern Italy. Deep seasonal freezing or permafrost? Quat Int 5:39–48

    Google Scholar 

  • Crescimanno G, De Santis A, Provenzano G (2007) Soil structure and bypass flow processes in a Vertisol under sprinkler and drip irrigation. Geoderma 138(1–2):110–118

    Google Scholar 

  • Crescimanno G, Marcum KB, Reina C, Versaci A (2009) Investigating soil-plant relationships for sustainable management of irrigation with saline water in a Sicilian vineyard. In: 5th International conference on sustainable water resources management. doi:10.2495/WRM090471

  • Cumer A (1994) Il progetto CORINE Land Cover in Italia: un modello da seguire. Documenti del Territorio. Anno VIII N. 28/29 giugno/dicembre 1994

    Google Scholar 

  • D’Amico M, Julitta F, Previtali F, Cantelli D (2008) Podzolization over ophiolitic materials in the western Alps (Natural Park of Mont Avic, Aosta Valley, Italy). Geoderma 146(1–2):129–137

    Google Scholar 

  • Dazzi C (2006) Acque saline e qualità del suolo. Ital J Agron 1(3):467–474

    Google Scholar 

  • Dazzi C, Fierotti G, Lombardo V, Monteleone S, Raimondi S, Scalenghe R, Bambina A, Caniglia K, Dolce F, Indorante A, Lo Papa G, Laudicina VA, Paladino V, Tusa D (2002) Un prodotto multimediale per il trasferimento delle conoscenze nel progetto POM—OTRIS: il CD-Rom sui Suoli Salini, pp 275–282

    Google Scholar 

  • Dazzi C, Laudicina VA, Lo Papa G, Monteleone S, Scalenghe R (2005) Soils with Gypsic Horizons in Southern Sicily, Italy. In: Faz Cano A, Ortiz R, Mermut AR (eds) Sustainable use and management of soils—Arid and Semiarid Regions, Advances in GeoEcology, vol 36. Catena, Germany pp 13–22

    Google Scholar 

  • Dazzi C, Papa G, Palermo V (2009) Proposal for a new diagnostic horizon for WRB Anthrosols. Geoderma 151(1–2):16–21

    Google Scholar 

  • Dazzi C, Monteleone S (2002) Soils and soil-landform relationships along an elevational transect in a gypsiferous hilly area in central Sicily, Italy. Acts 7° international meeting on soil with mediterranean type of climate. BARI. 50. pp 73–86

    Google Scholar 

  • Dazzi C, Monteleone S (2007) Anthropogenic processes in the evolution of a soil chronosequence on marly-limestone substrata in an Italian Mediterranean environment. Geoderma 141(3–4):201–209

    Google Scholar 

  • Dell’Abate MT, Benedetti A, Trinchera A, Dazzi C (2002) Humic substances along the profile of two Typic Haploxerert. Geoderma 107(3–4):281–296

    Google Scholar 

  • Douchafour P (1970) Precis de pedologie. Masson, Paris, p 438

    Google Scholar 

  • Durn G, Ottner F, Slovenec D (1999) Mineralogical and geochemical indicators of the polygenetic nature of Terra Rossa in Istria, Croazia. Geoderma 91:125–150

    CAS  Google Scholar 

  • Egli M, Alioth L, Mirabella A, Raimondi S, Nater M, Verel R (2007) Effect of climate and vegetation on soil organic carbon, humus fractions, allophanes, imogolite, kaolinite, and oxyhydroxides in volcanic soils of Etna (Sicily). Soil Sci 172(9):673–691

    CAS  Google Scholar 

  • Egli M, Mastrolonardo G, Seiler R, Raimondi S, Favilli F, Crimi V, Krebs R, Cherubini P, Certini G (2012) Charcoal and stable soil organic matter as indicators of fire frequency, climate and past vegetation in volcanic soils of Mt. Etna, Sicily. Catena 88(1):14–26

    CAS  Google Scholar 

  • Egli M, Mirabella A, Mancabelli A, Sartori G (2004) Weathering of soils in Alpine areas as influenced by climate and parent material. Clays Clay Miner 52(3):287–303

    CAS  Google Scholar 

  • Egli M, Nater M, Mirabella A, Raimondi S, Plötze M, Alioth L (2008) Clay minerals, oxyhydroxide formation, element leaching and humus development in volcanic soils. Geoderma 143(1–2):101–114

    CAS  Google Scholar 

  • Egli M, Sartori G, Mirabella A, Favilli F, Giaccai D, Delbos E (2009) Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149(1–2):124–136

    CAS  Google Scholar 

  • Eppes MC, Bierma R, Vinson D, Pazzaglia F (2008) A soil chronosequence study of the Reno valley, Italy: Insights into the relative role of climate versus anthropogenic forcing on hillslope processes during the mid-Holocene. Geoderma 147(3–4):97–107

    CAS  Google Scholar 

  • Ermice A, Murolo M, Pugliano ML, Buondonno C (2002) Vertic soils in alluvion-reclaimed areas, Volturno River Plain, Italy. Soil Sci Soc Am J 66(6):1882–1888

    CAS  Google Scholar 

  • European Soil Bureau (1999) The European Soil Database, version 1.0. CD-ROM. Ispra, Italy

    Google Scholar 

  • Falsone G, Bonifacio E (2009) Pore-size distribution and particle arrangement in fragipan and nonfragipan horizons. J Plant Nutr Soil Sci 172(5):696–703

    CAS  Google Scholar 

  • Falsone G, Bonifacio E (2006) Destabilization of aggregates in some typic Fragiudalfs. Soil Sci 171(3):272–281

    CAS  Google Scholar 

  • FAO—Unesco (1974) Soil map of the world, vol 1 Legend. FAO, Rome, p 59

    Google Scholar 

  • FAO (1995) Global and national soils terrain digital databases (SOTER) 74 Rev. 1. FAO, Rome

    Google Scholar 

  • FAO/ISRIC/ISSS (1998) World reference base for soil resources. World Soil Resources Report, #84. FAO, Rome, p 88

    Google Scholar 

  • Fedoroff N (1997) Clay illuviation in red mediterranean soils. Catena 28:171–191

    Google Scholar 

  • Ferraro F, Terhorst B, Ottner F, Cremaschi M (2004) Val Sorda: an upper Pleistocene loess-paleosol sequence in northeastern Italy. Revista Mexicana de Ciencias Geologicas 21(1):30–47

    Google Scholar 

  • Fornasiero A, Putti M, Teatini P, Ferraris S, Rizzetto F, Tosi L (2003) Monitoring of hydrological parameters related to peat oxidation in a subsiding coastal basin south of Venice, Italy. IAHS–AISH Publ 278:458–462

    Google Scholar 

  • Finke P, Hartwich R, Dudal R, Ibanez J, Jamagne M, King D, Montanarella L, Yassoglu N (1998) Georeferenced soil database for Europe. EUR 18092, Ispra

    Google Scholar 

  • Franzluebbers AJ (2002) Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res 66(2):95–106

    Google Scholar 

  • Freppaz M, Letey S, Francesconi R, Cat Berro D, Mercalli L, Zanini E (2009) Soil properties in the sorted patterned ground of Piata Lazin, NW Italy. Geophys Res Abstr 11:EGU2009–1374

    Google Scholar 

  • Frumkin A, Stein M (2004) The Sahara-East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Gerusalem speleothem. Earth Planet Sci Lett 217:451–464

    CAS  Google Scholar 

  • Gambolati G, Putti M, Teatini P, Camporese M, Ferraris S, Gasparetto Stori G, Nicoletti V, Silvestri S, Rizzetto F, Tosi L (2005) Peat land oxidation enhances subsidence in the Venice watershed. Eos 86(23):217–224

    Google Scholar 

  • Guo Y, Gong P, Amundson R (2003) Pedodiversity in the United States of America. Geoderma 117(2003):99–115

    Google Scholar 

  • Iamarino M, Terribile F (2008) The importance of andic soils in mountain ecosystems: a pedological investigation in Italy. Eur J Soil Sci 59(6):1284–1292

    CAS  Google Scholar 

  • Ibáñez JJ, De-Alba S, Bermúdez FF, García-Álvarez A (1995) Pedodiversity: concepts and measures. Catena 24(3):215–232

    Google Scholar 

  • Ibáñez JJ, De-Alba S, Lobo A, Zucarello V, Yaalon DH (1998) Pedodiversity and global soil patterns at coarse scales (with discussion). Geoderma 83(3–4):171–214

    Google Scholar 

  • Ibáñez JJ, Ruiz-Ramos M, Tarquis AM (2006) Mathematical structures of biological and pedological taxonomies. Geoderma 134(3–4):360–372

    Google Scholar 

  • IUSS/ISRIC/FAO (2006) World Reference Base for Soil Resources. World Soil Resources Report 103 FAO, Rome, p 115

    Google Scholar 

  • Jackson ML, Clayton RN, Violante A, Violante P (1982) Aeolian influence on Terra Rossa soils of Italy traced by quartz oxygen isotopic ratio. Int Clay Conf 1981:293–301

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436

    Google Scholar 

  • Lambert JJ, Daroussin J, Eimberck M, Le Bas C, Jamagne M, King D, Montanarella L (2002) Soil geographical database for Eurasia and the mediterranean: instructions guide for elaboration at scale 1:1,000,000 Version 4.0, EUR 20422 EN, European Commission JRC

    Google Scholar 

  • Laubenstein M, Magaldi D (2008) Natural radioactivity of some red Mediterranean soils. Catena 76(1):22–26

    CAS  Google Scholar 

  • Licciardello F, Antoci ML, Brugaletta L, Cirelli GL (2011) Evaluation of groundwater contamination in a coastal area of south-eastern Sicily. J Environ Sci Health: Part B Pesticides Food Contam Agricultural Wastes 46(6):498–508

    CAS  Google Scholar 

  • Lo Papa G, Palermo V, Dazzi C (2011) Is land-use change a cause of loss of pedodiversity? The case of the Mazzarrone study area, sicily. Geomorphology 135(3–4):332–342

    Google Scholar 

  • Lorè A, Magaldi D, Tallini M (2002) Morphology and morphometry of the Gran Sasso (Central Italy) surface karst. Geografia Fisica e Dinamica Quaternaria 25(2):123–134

    Google Scholar 

  • Lulli L (2007) Italian volcanic soils. In: Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, Garcia-Rodeja E (eds) Soils of volcanic regions in Europe. Springer, Berlin, pp 51–67

    Google Scholar 

  • Lulli L, Bidini D (1980) A climosequence of soils from tuffs on slopes of an extinct volcano in southern Italy. Geoderma 24(2):129–142

    CAS  Google Scholar 

  • Lulli L, Bidini D, Quantin P (1988) A climo and litho soil-sequence on the Vico volcano (Italy). Cahiers—ORSTOM Serie Pedologie 24(1):49–60

    CAS  Google Scholar 

  • Kubïena WL (1953) The soil of the Europe. Thomas Murby and Company, London, p 145

    Google Scholar 

  • Magaldi D, Biagi B, Calzolari C, Mancini F (1992) The collection and the computerization of soil mapping data in Italy. Final report on the research convention between the EC DG Viand the Dipartment of Soil Science and Plant Nutrition of the University of Florence. Quaderni di scienza del suolo, vol IV, CNR, Firenze

    Google Scholar 

  • Mancini F (1966) Short commentary on the soil map of Italy (scale 1:1.000.000) (Breve commento alla carta dei suoli d’Italia. In scala 1:1.000.000 con breve commento). (In Italian and English). Comitato per la Carta dei Suoli. Tipografia Coppini, Firenze

    Google Scholar 

  • Marignani M, Rocchini D, Torri D, Chiarucci A, Maccherini S (2008) Planning restoration in a cultural landscape in Italy using an object-based approach and historical analysis. Landscape Urban Plan 84(1):28–37

    Google Scholar 

  • Marinari S, Dell’Abate MT, Brunetti G, Dazzi C (2010) Differences of stabilized organic carbon fractions and microbiological activity along Mediterranean Vertisols and Alfisols profiles. Geoderma 156(3–4):379–388

    CAS  Google Scholar 

  • McBratney AB (1995) Pedodiversity. Pedometron 3:1–3

    Google Scholar 

  • McBratney AB, Minasny B (2007) On measuring pedodiversity. Geoderma 141:149–154

    Google Scholar 

  • Mirabella A, Costantini EAC, Carnicelli S (1992) Genesis of a policyclic Terra Rossa (Chromic Cambisol on Rhodic Nitisol) at the Poggio del Comune in Central Italy. Zeitschrift für Planzenernahrung und Bodenkunde München 155:407–413

    Google Scholar 

  • Mirabella A, Egli M (2003) Structural transformations of clay minerals in soils of a climosequence in an Italian Alpine environment. Clays Clay Miner 51(3):264–278

    CAS  Google Scholar 

  • Mirabella A, Egli M, Carnicelli S, Sartori G (2002) Influence of parent material on clay minerals formation in Podzols of Trentino, Italy. Clay Miner 37(4):699–707

    CAS  Google Scholar 

  • Moreau E, Velde B, Terribile F (1999) Comparison of 2D and 3D images of fractures in a Vertisol. Geoderma 92(1–2):55–72

    Google Scholar 

  • Pagliai M, Pezzarossa B, Zerbi G, Alvino A, Pini R, Guidi GV (1989) Soil porosity in a peach orchard as influenced by water table depth. Agric Water Manag 16(1–2):63–73

    Google Scholar 

  • Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European soil data centre: response to European policy support and public data requirements. Land Use Policy 29(2):329–338

    Google Scholar 

  • Pellegrini S, Vignozzi N, Costantini EAC, L’Abate G (2007) A new pedotransfer function for estimating soil bulk density. In: Carmelo D (ed) Changing soils in a changing wold: the soils of tomorrow. Book of abstracts. 5th International congress of European society for soil conservation, Palermo, pp 25–30

    Google Scholar 

  • Principi P (1943) I terreni d’Italia, terreni naturali e terreni agrari, con una grande carta pedologica d’Italia a colori. Società anonima editrice Dante Alighieri, p 242

    Google Scholar 

  • Priori S, Costantini EAC, Capezzuoli E, Protano G, Hilgers A, Sauer D, Sandrelli F (2008) Pedostratigraphy of Terra Rossa and Quaternary geological evolution of a lacustrine limestone plateau in central Italy. J Plant Nutr Soil Sci 171(4):509–523

    CAS  Google Scholar 

  • Quantin P, Gautheyrou J, Lorenzoni P (1988) Halloysite formation through in situ weathering of volcanic glass from trachytic pumices, Vico’s volcano. Italy Clay Miner 23(4):423–437

    Google Scholar 

  • Raimondi S (2009) Il processo di lisciviazione dei sali solubili in relazione all’andamento climatico nella piana di Gela (Sicilia). http://www.agrometeorologia.it/documenti/Aiam2009/16Raimondi_formattato_lavoro_070509.pdf

  • Raimondi S, Perrone E, Barbera V (2010) Pedogenesis and variability in soil properties in a floodplain of a semiarid environment in southwestern Sicily (Italy). Soil Sci 175(12):614–623

    CAS  Google Scholar 

  • Regione Emilia Romagna (1995) Carta dei suoli regionale scala1:50.000. Ufficio Pedologico, Servizio Cartografico, Bologna

    Google Scholar 

  • Righi D, Terribile F, Petit S (1999) Pedogenic formation of kaolinite-smectite mixed layers in a soil toposequence developed from basaltic parent material in Sardinia (Italy). Clays Clay Miner 47(4):505–514

    CAS  Google Scholar 

  • Righini G, Costantini EAC, Sulli L (2001) La banca dati delle regioni pedologiche italiane. Boll Soc It Sc Suolo 50:261–271

    Google Scholar 

  • Ristori GG, Sparvoli E, de Nobili M, D’Acqui LP (1992) Characterization of organic matter in particle-size fractions of Vertisols. Geoderma 54(1–4):295–305

    CAS  Google Scholar 

  • Royer DL (1999) Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology 27:1123–1126

    Google Scholar 

  • Sacco D, Offi M, De Maio M, Grignani C (2007) Groundwater nitrate contamination risk assessment: a comparison of parametric systems and simulation modelling. Am J Environ Sci 3(3):117–125

    CAS  Google Scholar 

  • Sanesi G, Certini G (2005) The umbric epipedon in the N Apennines, Italy—An example from the Vallombrosa Forest. J Plant Nutr Soil Sci 168(3):392–398

    CAS  Google Scholar 

  • Scacco A, Verzera A, Lanza CM, Sparacio A, Genna G, Raimondi S, Tripodi G, Dima G (2010) Influence of soil salinity on sensory characteristics and Volatile Aroma compounds of Nero d’Avola Wine Am. J Enol Vitic 61:498–505

    CAS  Google Scholar 

  • Scalenghe R, Bonifacio E, Celi L, Ugolini FC, Zanini E (2002) Pedogenesis in disturbed alpine soils (NW Italy). Geoderma 109(3–4):207–224

    CAS  Google Scholar 

  • Scalenghe R, Certini G, Corti G, Zanini E, Ugolini FC (2004) Segregated ice and liquefaction effects on compaction of fragipans. Soil Sci Soc Am J 68:204–214

    CAS  Google Scholar 

  • Servizio Geologico d’Italia (1978) Carta geologica d’Italia al 500.000. Rome

    Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. USDA-Natural Resources Conservation Service, Washington

    Google Scholar 

  • Tedeschi A, Menenti M (2002) Simulation studies of long-term saline water use: model validation and evaluation of schedules. Agric Water Manag 54(2):123–157

    Google Scholar 

  • Terribile F, Basile A, De Mascellis R, Iamarino M, Magliulo P, Pepe S (2007) Landslide processes and Andosols: the case study of the Campania region, Italy. Soils of Volcanic Regions in Europe, pp 545–563

    Google Scholar 

  • Tóth et al (2008) Updated map of salt affected soils in the European Union In: Tóth G, Montanarella L, Rusco E (eds) Threats to soil quality in Europe EUR 23438—Scientific and technical research series Luxembourg, Office for Official Publications of the European Communities, pp 61–74

    Google Scholar 

  • Ungaro F, Calzolari C, Tarocco P, Giapponesi A, Sarno G (2005) Quantifying spatial uncertainty of soil organic matter content using conditional sequential simulations: a case study in Emilia Romagna Plain (Northern Italy). Can J Soil Sci 85(4):499–510

    CAS  Google Scholar 

  • United States Department of Agriculture—Natural Resources Conservation Service (2007) Hydrology National Engineering Handbook, Chapter 7

    Google Scholar 

  • Vacca A, Adamo P, Pigna M, Violante P (2003) Genesis of tephra-derived soils from the Roccamonfina volcano. S Central Italy Soil Sci Soc Am J 67(1):198–207

    CAS  Google Scholar 

  • Vignozzi N, Pellegrini S, Batistoni E, Rocchini A, L’Abate G, Costantini EAC (2007) Suscettibilità al compattamento di inceptisuoli vertici: messa a punto di un nuovo indice di stima. In: Il suolo: sistema centrale nell’ambiente e nell’agricoltura. Atti del convegno nazionale della Società Italiana della Scienza del Suolo, Bari 21–24 giugno 2005:203–210. Nicola Senesi e Teodoro Miano ed

    Google Scholar 

  • Violante P, Wilson MJ (1983) Mineralogy of some Italian andosols with special reference to the origin of the clay fraction. Geoderma 29(2):157–174

    CAS  Google Scholar 

  • Vingiani S, Righi D, Petit S, Terribile F (2004) Mixed-layer kaolinite-smectite minerals in a red-black soil sequence from basalt in Sardinia (Italy). Clays Clay Miner 52(4):473–483

    CAS  Google Scholar 

  • Zanini E, Bonifacio E, Alliani N, Boero V (1995) The origin and chemical, mineralogical and structural character of the marginal soils of the Apennines in the Basilicata region. Mineral Petrogr Acta 38:177–188

    CAS  Google Scholar 

  • Zilioli D, Bini C, Whasha M, Ciotoli G (2011) The pedological heritage of the Dolomites (Northern Italy): features, distribution and evolution of the soils, with some implications for land management. Geomorphology 135:232–247

    Google Scholar 

Download references

Acknowledgments

The Authors acknowledge the contribution of the participant to the project “soil database of Italy”, financed by the Italian Ministry of Agriculture, Food and Forestry Policies, and in particular all the regional soil services, and the soil chairs of the Universities of Perugia, Sassari, Venice, and Palermo. A special thank is for prof. Carmelo Dazzi, University of Palermo, for the useful comments and information, in particular on soils of Sicily.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo A. C. Costantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Costantini, E.A., Barbetti, R., Fantappiè, M., L’Abate, G., Lorenzetti, R., Magini, S. (2013). Pedodiversity. In: Costantini, E., Dazzi, C. (eds) The Soils of Italy. World Soils Book Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5642-7_6

Download citation

Publish with us

Policies and ethics