Skip to main content

Powder Diffraction: By Decades

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

This introductory chapter reviews the first 100 years of powder diffraction, decade by decade, from the earliest X-ray powder diffraction measurements of the crystal structure of graphite through to the diversity and complexity of twenty-first century powder diffraction. Carbon features as an illustrative example throughout the discussion of these ten decades from graphite and the disorder of carbon black through to lonsdaleite, the elusive hexagonal polymorph of diamond, and C60, the most symmetrical of molecules. Electronics and computing have played a leading role in the development of powder diffraction, particularly over the past 60 years, and the Moore’s Law decade-by-decade rise in computing power is clear in the increasing complexity of powder diffraction experiments and material systems that can be studied. The chapter concludes with a final discussion of decades – the four decades of length-scale from the ångstrom to the micron that not only represent the domain of powder diffraction but are also the distances that will dominate twenty-first century science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.iucr.org/publ/50yearsofxraydiffraction

  2. Friedrich W, Knipping P, von Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte der Mathematisch-Physikalischen, Classe der Königlich-Bayerischen Akademie der Wissenschaften zu München, pp 303–322

    Google Scholar 

  3. Bragg WH (1912) The specular reflexion of X-rays. Nature 90:410

    Article  ADS  Google Scholar 

  4. Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. Proc Camb Phil Soc 17:43

    MATH  Google Scholar 

  5. Bragg WH (1913) The reflection of X-rays by crystals (II). Proc R Soc Lond A 89:246–248; Bragg WL (1913) The structure of some crystals as indicated by their diffraction of X-rays. Proc R Soc Lond A 89:248–277; Bragg WH, Bragg WL (1913) The structure of the diamond. Proc R Soc Lond A 89:277–291

    Google Scholar 

  6. von Laue M (1915) Concerning the detection of X-ray interferences, Nobel lecture, http://nobelprize.org/nobel_prizes/physics/laureates/1914/laue-lecture.pdf

  7. Debye P (1915) Scattering of X-rays. Ann Physik 46:809–823

    Article  ADS  Google Scholar 

  8. Debye P, Scherrer P (1916) Interferenzen an regellos orientierten Teilchen im Rontgenlicht. Physik Z 17:277–282

    Google Scholar 

  9. http://www.iucr.org/__data/assets/pdf_file/0015/771/hull.pdf

  10. Hull AW (1917) A new method of X-ray crystal analysis. Phys Rev 10:661–696

    Article  ADS  Google Scholar 

  11. Hull AW (1919) A new method of chemical analysis. J Am Chem Soc 41:1168–1175

    Article  Google Scholar 

  12. Hull AW (1921) The X-ray crystal analysis of thirteen common metals. Phys Rev 17:571–588

    Article  ADS  Google Scholar 

  13. http://ww1.iucr.org/people/warren.htm; http://www.iucr.org/__data/assets/pdf_file/0020/785/warren.pdf

  14. Warren BE (1969/1990) X-ray diffraction. Addison-Wesley/Dover, Reading/Mineola

    Google Scholar 

  15. Warren BE (1934) X-ray powder diffraction study of carbon black. J Chem Phys 2:551–555

    Article  ADS  Google Scholar 

  16. Biscoe J, Warren BE (1942) An X-ray study of carbon black. J Appl Phys 13:364–371

    Article  ADS  Google Scholar 

  17. Houska CR, Warren BE (1954) X-ray study of the graphitization of carbon black. J Appl Phys 25:1503–1509

    Article  ADS  Google Scholar 

  18. Warren BE, Bodenstein P (1966) The shape of two-dimensional carbon black reflections. Acta Crystallogr 20:602–604

    Article  Google Scholar 

  19. Treacy MMJ, Newsam JM, Deem MW (1991) A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc R Soc Lond A 433:499–520. http://www.public.asu.edu/~mtreacy/DIFFaX_manual.pdf

  20. Egami T, Billinge SJL (2003) Underneath the Bragg peaks: structural analysis of complex materials. Pergamon Press Elsevier/Oxford University Press, Oxford

    Google Scholar 

  21. Scardi P, Ortolani M, Leoni M (2010) WPPM: microstructural analysis beyond the Rietveld method. Mater Sci Forum 651:155–171; Leoni M, Martinez-Garcia J, Scardi P (2010) Mater Sci Forum 651:173–186

    Google Scholar 

  22. Shull CG (1995) Early development of neutron scattering. Rev Mod Phys 67:753–757

    Article  ADS  Google Scholar 

  23. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152

    Article  Google Scholar 

  24. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  25. Young RA (ed) (1993) The Rietveld method. Oxford University Press/International Union of Crystallography, Oxford

    Google Scholar 

  26. Malmros G, Thomas JO (1977) Least-squares structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer. J Appl Crystallogr 10:7–11

    Article  Google Scholar 

  27. Khattak CP, Cox DE (1977) Profile analysis of X-ray powder diffractometer data: structural refinement of La0.75Sr0.25CrO3. J Appl Crystallogr 10:405–411

    Article  Google Scholar 

  28. David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. Oxford University Press, Oxford

    Google Scholar 

  29. Pecharsky V, Zavalij P (2008) Fundamentals of powder diffraction and structural characterization of materials. Springer, New York

    Google Scholar 

  30. Kisi EH, Howard CJ (2008) Applications of neutron powder diffraction. Oxford University Press, Oxford

    Book  Google Scholar 

  31. Dinnebier RE, Billinge SJL (eds) (2008) Powder diffraction: theory and practice. RSC Publishing, Cambridge

    Google Scholar 

  32. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminster-fullerene. Nature 318:162–163

    Article  ADS  Google Scholar 

  33. Krätschmer W, Lowell D, Lamb D, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  ADS  Google Scholar 

  34. Heiney PA, Fischer JE, McGhie AR, Romanow WJ, Denenstein AM, McCauley JP Jr, Smith AB III, Cox DE (1991) Orientational ordering transition in solid C60. Phys Rev Lett 66:2911–2914

    Article  ADS  Google Scholar 

  35. Sachidanandam R, Harris AB (1991) Comment on ‘Orientational ordering transition in solid C60’. Phys Rev Lett 67:1467

    Article  ADS  Google Scholar 

  36. David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Crystal structure and bonding of ordered C60. Nature 353:147–149

    Article  ADS  Google Scholar 

  37. David WIF, Ibberson RM, Matsuo T (1993) High resolution neutron powder diffraction – a case study of the structure of C60. Proc R Soc Lond A Math Phys Eng Sci 442:129–146

    Article  ADS  Google Scholar 

  38. David WIF, Ibberson RM (2012) in preparation

    Google Scholar 

  39. Coelho AA (2011) TOPAS academic; http://wwwtopas-academicnet/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William I. F. David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

David, W.I.F. (2012). Powder Diffraction: By Decades. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_1

Download citation

Publish with us

Policies and ethics