Skip to main content

Mass measurements of neutron-deficient nuclei and their implications for astrophysics

  • Chapter
  • First Online:
Three decades of research using IGISOL technique at the University of Jyväskylä
  • 458 Accesses

Abstract

During the years 2005–2010 the double–Penning-trap mass spectrometer JYFLTRAP has been used to measure the masses of 90 ground and 8 isomeric states of neutron-deficient nuclides with a typical precision of better than 10 keV. The masses of 14 nuclides —84Zr, 88,89Tc, 90-92Ru, 92-94Rh, 94,95Pd, 106,108,110Sb— have been experimentally determined for the first time. This article gives an overview on these measurements and their impact on the modeling of the astrophysical rp-process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.K. Wallace, S.E. Woosley, Astrophys. J. Suppl. Ser. 45, 389 (1981).

    ADS  Google Scholar 

  2. H. Schatz et al., Phys. Rep. 294, 167 (1998).

    ADS  Google Scholar 

  3. V.-V. Elomaa et al., Phys. Rev. Lett. 102, 252501 (2009).

    ADS  Google Scholar 

  4. S.E. Woosley et al., Astrophys. J. Suppl. S. 151, 75 (2004).

    ADS  Google Scholar 

  5. J. José, F. Moreno, A. Parikh, C. Iliadis, Astrophys. J. Suppl. S. 189, 204 (2010).

    ADS  Google Scholar 

  6. C. Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006).

    ADS  Google Scholar 

  7. J. Pruet et al., Astrophys. J. 644, 1028 (2006).

    ADS  Google Scholar 

  8. S. Wanajo, Astrophys. J. 647, 1323 (2006).

    ADS  Google Scholar 

  9. S. Wanajo, H.-T. Janka, S. Kubono, Astrophys. J. 729, 46 (2011).

    ADS  Google Scholar 

  10. J. José, A. Coc, M. Hernanz, Astrophys. J. 520, 347 (1999).

    ADS  Google Scholar 

  11. J. José, A. Coc, M. Hernanz, Astrophys. J. 560, 897 (2001).

    ADS  Google Scholar 

  12. J. José, M. Hernanz, J. Phys. G 34, R431 (2007).

    ADS  Google Scholar 

  13. S. Starrfield et al., Astrophys. J. 692, 1532 (2009).

    ADS  Google Scholar 

  14. S.A. Glasner, J.W. Truran, Astrophys. J. Lett. 692, L58 (2009).

    ADS  Google Scholar 

  15. A. Parikh et al., Phys. Rev. C 79, 045802 (2009).

    ADS  MathSciNet  Google Scholar 

  16. H. Schatz, Int. J. Mass Spectrom. 251, 293 (2006).

    ADS  Google Scholar 

  17. M. Breitenfeldt et al., Phys. Rev. C 80, 035805 (2009).

    ADS  Google Scholar 

  18. J. Savory et al., Phys. Rev. Lett. 102, 132501 (2009).

    ADS  Google Scholar 

  19. C. Weber et al., Phys. Rev. C 78, 054310 (2008).

    ADS  Google Scholar 

  20. T. Fleckenstein, Diploma thesis, Justus-Liebig-Universität Gießen, 2008.

    Google Scholar 

  21. J. Fallis et al., Phys. Rev. C 78, 022801 (2008).

    ADS  Google Scholar 

  22. G. Savard et al., Hyperfine Interact. 132, 221 (2001).

    ADS  Google Scholar 

  23. M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008).

    ADS  Google Scholar 

  24. R. Ringle et al., Nucl. Instrum. Methods Phys. Res. A 604, 536 (2009).

    ADS  Google Scholar 

  25. M. Block et al., Eur. Phys. J. D 45, 39 (2007).

    ADS  Google Scholar 

  26. A. Saastamoinen et al., Phys. Rev. C 80, 044330 (2009).

    ADS  Google Scholar 

  27. A. Kankainen et al., Phys. Rev. C 82, 052501 (2010).

    ADS  Google Scholar 

  28. T. Eronen, Ph.D. thesis, Department of Physics, University of Jyväskylä, 2008.

    Google Scholar 

  29. E. Wigner, Phys. Rev. 51, 947 (1937).

    ADS  Google Scholar 

  30. J. ¨Aystö, Nucl. Phys. A 693, 477 (2001).

    Google Scholar 

  31. M. Oinonen et al., Nucl. Instrum. Methods Phys. Res. A 416, 485 (1998).

    ADS  Google Scholar 

  32. J. Huikari et al., Nucl. Instrum. Methods Phys. Res. B 222, 632 (2004).

    ADS  Google Scholar 

  33. T. Eronen et al., Phys. Rev. C 79, 032802 (2009).

    ADS  Google Scholar 

  34. T. Eronen et al., Phys. Rev. Lett. 103, 252501 (2009).

    ADS  Google Scholar 

  35. T. Eronen et al., Phys. Rev. Lett. 97, 232501 (2006).

    ADS  Google Scholar 

  36. T. Kurtukian Nieto et al., Phys. Rev. C 80, 035502 (2009).

    ADS  Google Scholar 

  37. T. Eronen et al., Phys. Rev. Lett. 100, 132502 (2008).

    ADS  Google Scholar 

  38. A. Kankainen et al., Phys. Rev. C 82, 034311 (2010).

    ADS  Google Scholar 

  39. T. Eronen et al., Phys. Lett. B 636, 191 (2006).

    ADS  Google Scholar 

  40. A. Kankainen et al., Eur. Phys. J. A 29, 271 (2006).

    ADS  Google Scholar 

  41. V. Elomaa et al., Eur. Phys. J. A 40, 1 (2009).

    ADS  Google Scholar 

  42. A. Nieminen et al., Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001).

    ADS  Google Scholar 

  43. V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. A 528, 776 (2004).

    ADS  Google Scholar 

  44. G. Savard et al., Phys. Lett. A 158, 247 (1991).

    ADS  Google Scholar 

  45. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980).

    Google Scholar 

  46. M. König et al., Int. J. Mass Spectrom. Ion Processes 142, 95 (1995).

    ADS  Google Scholar 

  47. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003).

    ADS  Google Scholar 

  48. V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. A 612, 97 (2009).

    ADS  Google Scholar 

  49. W. Benenson, E. Kashy, Rev. Mod. Phys. 51, 527 (1979).

    ADS  Google Scholar 

  50. M. Bentley, S. Lenzi, Prog. Part. Nucl. Phys. 59, 497 (2007).

    ADS  Google Scholar 

  51. N. Auerbach, Phys. Rep. 98, 273 (1983).

    ADS  Google Scholar 

  52. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    ADS  Google Scholar 

  53. R. Firestone, Nucl. Data Sheets 108, 1 (2007).

    ADS  Google Scholar 

  54. V.E. Iacob et al., Phys. Rev. C 74, 045810 (2006).

    ADS  Google Scholar 

  55. C. Wrede et al., Phys. Rev. C 81, 055503 (2010).

    ADS  Google Scholar 

  56. M. Bhattacharya et al., Phys. Rev. C 77, 065503 (2008).

    ADS  Google Scholar 

  57. M. Redshaw, J. McDaniel, E.G. Myers, Phys. Rev. Lett. 100, 093002 (2008).

    ADS  Google Scholar 

  58. A.A. Kwiatkowski et al., Phys. Rev. C 80, 051302 (2009).

    ADS  Google Scholar 

  59. A. Paul, S. Röttger, A. Zimbal, U. Keyser, Hyperfine Interact. 132, 189 (2001).

    ADS  Google Scholar 

  60. P. Rikmenspoel, D.V. Patter, Nucl. Phys. 24, 494 (1961).

    Google Scholar 

  61. G. Rickards, B.E. Bonner, G.C. Phillips, Nucl. Phys. 86, 167 (1966).

    Google Scholar 

  62. R. Nussbaum et al., Physica 20, 571 (1954).

    ADS  Google Scholar 

  63. K. Sato, Mass Spectrom. (Japan) 5, 54 (1964).

    Google Scholar 

  64. S. Antman, H. Pettersson, A. Suarez, Nucl. Phys. A 94, 289 (1967).

    ADS  Google Scholar 

  65. J.M. Freeman et al., Nucl. Phys. 65, 113 (1965).

    Google Scholar 

  66. B.E. Bonner, G. Rickards, D.L. Bernard, G.C. Phillips, Nucl. Phys. 86, 187 (1966).

    Google Scholar 

  67. J. Overley, P. Parker, D. Bromley, Nucl. Instrum. Methods 68, 61 (1969).

    ADS  Google Scholar 

  68. L. Erikson et al., Phys. Rev. C 81, 045808 (2010).

    ADS  Google Scholar 

  69. B. Sherrill et al., Phys. Rev. C 28, 1712 (1983).

    ADS  Google Scholar 

  70. M.B. Greenfield, C.R. Bingham, E. Newman, M.J. Saltmarsh, Phys. Rev. C 6, 1756 (1972).

    ADS  Google Scholar 

  71. N. Severijns, M. Tandecki, T. Phalet, I.S. Towner, Phys. Rev. C 78, 055501 (2008).

    ADS  Google Scholar 

  72. O. Naviliat-Cuncic, N. Severijns, Phys. Rev. Lett. 102, 142302 (2009).

    ADS  Google Scholar 

  73. H. Fujita et al., Phys. Rev. C 75, 034310 (2007).

    ADS  Google Scholar 

  74. C. Guénaut et al., Phys. Rev. C 75, 044303 (2007).

    ADS  Google Scholar 

  75. D. Rodríguez et al., Nucl. Phys. A 769, 1 (2006).

    ADS  Google Scholar 

  76. F. Herfurth et al., Eur. Phys. J. A 15, 17 (2002).

    ADS  Google Scholar 

  77. F. Herfurth et al., Nucl. Phys. A 746, 487 (2004).

    ADS  Google Scholar 

  78. G. Sikler et al., Nucl. Phys. A 763, 45 (2005).

    ADS  Google Scholar 

  79. F. Herfurth et al., Eur. Phys. J. A 47, 1 (2011).

    ADS  Google Scholar 

  80. P. Schury et al., Phys. Rev. C 75, 055801 (2007).

    ADS  Google Scholar 

  81. J.A. Clark et al., Phys. Rev. Lett. 92, 192501 (2004).

    ADS  Google Scholar 

  82. M.L. Commara et al., Nucl. Phys. A 708, 167 (2002).

    ADS  Google Scholar 

  83. C. Plettner et al., Nucl. Phys. A 733, 20 (2004).

    ADS  Google Scholar 

  84. K. Kaneko, Y. Sun, M. Hasegawa, T. Mizusaki, Phys. Rev. C 77, 064304 (2008).

    ADS  Google Scholar 

  85. E. Nolte, H. Hick, Z. Phys. A 305, 289 (1982).

    Google Scholar 

  86. E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003).

    ADS  Google Scholar 

  87. J.C. Hardy, L.C. Carraz, B. Jonson, P.G. Hansen, Phys. Lett. B 71, 307 (1977).

    ADS  Google Scholar 

  88. S. Issmer et al., Eur. Phys. J. A 2, 173 (1998).

    ADS  Google Scholar 

  89. S. Kato et al., Phys. Rev. C 41, 1276 (1990).

    ADS  Google Scholar 

  90. A. Martín et al., Eur. Phys. J. A 34, 341 (2007).

    ADS  Google Scholar 

  91. J.A. Clark et al., Eur. Phys. J. A 25, s01, 629 (2005).

    Google Scholar 

  92. J. Fallis et al., Phys. Rev. C 84, 045807 (2011).

    ADS  Google Scholar 

  93. A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003).

    ADS  Google Scholar 

  94. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003).

    ADS  Google Scholar 

  95. J. Döring, A. Aprahamian, M. Wiescher, J. Res. Natl. Inst. Stand. Technol. 105, 43 (2000).

    Google Scholar 

  96. S. Dean et al., Eur. Phys. J. A 21, 243 (2004).

    ADS  Google Scholar 

  97. D. Kast et al., Z. Phys. A 356, 363 (1996).

    ADS  MathSciNet  Google Scholar 

  98. A. Kankainen et al., Eur. Phys. J. A 25, 355 (2005).

    ADS  Google Scholar 

  99. R. Barden et al., Z. Phys. A 329, 319 (1988).

    ADS  Google Scholar 

  100. H. Keller et al., Z. Phys. A 340, 363 (1991).

    ADS  Google Scholar 

  101. M. Kavatsyuk, L. Batist, M. Karny, E. Roeckl, Int. J. Mass Spectrom. 251, 138 (2006).

    ADS  Google Scholar 

  102. A. Płlochocki et al., Nucl. Phys. A 332, 29 (1979).

    Google Scholar 

  103. R. Kirchner et al., Phys. Lett. B 70, 150 (1977).

    ADS  Google Scholar 

  104. E. Roeckl et al., Phys. Lett. B 78, 393 (1978).

    ADS  Google Scholar 

  105. D. Schardt et al., Nucl. Phys. A 326, 65 (1979).

    ADS  Google Scholar 

  106. F. Heine et al., Z. Phys. A 340, 225 (1991).

    ADS  Google Scholar 

  107. D. Schardt et al., Nucl. Phys. A 368, 153 (1981).

    ADS  Google Scholar 

  108. R.J. Tighe et al., Phys. Rev. C 49, R2871 (1994).

    ADS  Google Scholar 

  109. D.D. Bogdanov, V.A. Karnaukhova, L.A. Petrov, Yad. Fizika 17, 457 (1973).

    Google Scholar 

  110. Y. Litvinov et al., Nucl. Phys. A 756, 3 (2005).

    ADS  Google Scholar 

  111. K. Sharma et al., in Proceedings of 9th International Conference on Atomic Masses and Fundamental constants AMCO-9, and 6th International Conference on Nuclei far from Stability NUFAST-6, edited by R. Neugart, A. Wöhr (IOP Publishing, Bristol, Philadelphia, 1992) p. 31.

    Google Scholar 

  112. M.G. Johnston et al., J. Phys. G 8, 1405 (1982).

    ADS  Google Scholar 

  113. F. Heine et al., in Proceedings of 9th International Conference on Atomic Masses and Fundamental constants AMCO-9, and 6th International Conference on Nuclei far from Stability NUFAST-6, edited by R. Neugart, A. Wöhr (IOP Publishing, Bristol, Philadelphia, 1992) p. 331.

    Google Scholar 

  114. R.D. Page et al., Phys. Rev. C 49, 3312 (1994).

    ADS  Google Scholar 

  115. T. Faestermann et al., Phys. Lett. B 137, 23 (1984).

    ADS  Google Scholar 

  116. E. Haettner et al., Phys. Rev. Lett. 106, 122501 (2011).

    ADS  Google Scholar 

  117. S.M. Fischer et al., Phys. Rev. C 75, 064310 (2007).

    ADS  Google Scholar 

  118. J. José, M. Hernanz, C. Iliadis, Nucl. Phys. A 777, 550 (2006).

    ADS  Google Scholar 

  119. P.M. Endt, Nucl. Phys. A 633, 1 (1998).

    ADS  Google Scholar 

  120. A. Parikh et al., Phys. Rev. C 71, 055804 (2005).

    ADS  Google Scholar 

  121. S. Amari et al., Astrophys. J. 551, 1065 (2001).

    ADS  Google Scholar 

  122. D.G. Jenkins et al., Phys. Rev. C 73, 065802 (2006).

    ADS  Google Scholar 

  123. Z. Ma et al., Phys. Rev. C 76, 015803 (2007).

    ADS  Google Scholar 

  124. C. Wrede et al., Phys. Rev. C 76, 052802 (2007).

    ADS  Google Scholar 

  125. C. Wrede et al., Phys. Rev. C 79, 045803 (2009).

    ADS  Google Scholar 

  126. J.L. Fisker, R.D. Hoffman, J. Pruet, Astrophys. J. Lett. 690, L135 (2009).

    ADS  Google Scholar 

  127. O. Forstner et al., Phys. Rev. C 64, 045801 (2001).

    ADS  Google Scholar 

  128. A. Płochocki et al., Phys. Lett. B 106, 285 (1981).

    ADS  Google Scholar 

  129. C. Mazzocchi et al., Phys. Rev. Lett. 98, 212501 (2007).

    ADS  Google Scholar 

  130. W. Rapp et al., Astrophys. J. 653, 474 (2006).

    ADS  Google Scholar 

  131. M. Aikawa et al., Astron. Astrophys. 441, 1195 (2005).

    ADS  Google Scholar 

  132. T. Rauscher, F.-K. Thielemann, At. Data Nucl. Data Tables 79, 47 (2001).

    ADS  Google Scholar 

  133. H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).

    ADS  Google Scholar 

  134. B.A. Brown et al., Phys. Rev. C 65, 045802 (2002).

    ADS  Google Scholar 

  135. X.L. Tu et al., Phys. Rev. Lett. 106, 112501 (2011).

    ADS  Google Scholar 

  136. S. George et al., Int. J. Mass Spectrom. 264, 110 (2007).

    ADS  Google Scholar 

  137. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007).

    ADS  Google Scholar 

  138. M. Reponen et al., Eur. Phys. J. A 42, 509 (2009).

    ADS  Google Scholar 

  139. D. Abriola, A. Sonzogni, Nucl. Data Sheets 107, 2423 (2006).

    ADS  Google Scholar 

  140. I. Mukha et al., Nature 439, 298 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kankainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kankainen, A., Novikov, Y.N., Schatz, H., Weber, C. (2012). Mass measurements of neutron-deficient nuclei and their implications for astrophysics. In: Äystö, J., Eronen, T., Jokinen, A., Kankainen, A., Moore, I.D., Penttilä, H. (eds) Three decades of research using IGISOL technique at the University of Jyväskylä. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5555-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5555-0_27

  • Received:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5554-3

  • Online ISBN: 978-94-007-5555-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics