Skip to main content

A Biphasic 3D-FEM Model for the Remodeling of Microcirculation in Liver Lobes

  • Conference paper
Computer Models in Biomechanics

Abstract

In this study we focus on a 3D computational model for the description of microperfusion and its application in liver lobes. The remodeling of microperfusion is initiated after a venous outflow obstruction. In particular, focal hepatovenous outflow obstruction can be caused by liver resection. Drainage of the obstructed territories is reestablished via dilatation of sinusoids connecting outflow obstructed territories to territories with normal hepatovenous outflow. Microperfusion is modeled by a homogenized biphasic approach based on the theory of porous media, see Ricken et al. (Biomech. Model. Mechanobiol. 9:435–450, 2010). Regarding the remodeling of microcirculation we make use of the phenomenological hypothesis that the blood pressure gradient is the main driving force for the formation of sinusoidal vascular canals. We recall the constitutive relations for the biphasic model including the solid stress, the transverse isotropic permeability law, and the remodeling algorithm. Finally, we present a numerical three-dimensional example covering microcirculation in seven liver lobes. After calculating the physiological status of the microcirculation in the liver lobes, we tested the hypothesis that the reorientation of blood flow mainly depends on the pressure gradient. Our findings support this hypothesis due to good agreement between experimental observation and computational results. Further investigations are needed to analyze functional processes such as cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrosi D, Mollica F (2002) On the mechanics of a growing tumor. Int J Eng Sci 40:1297–1316

    Article  MathSciNet  MATH  Google Scholar 

  • Biot MA (1935) Le problème de la consolidation des matières argileuses sous une charge. Ann Soc Sci Brux Sér I 55:110–113

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  • Bluhm J (2002) Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers W, Bluhm J (eds) Porous media: theory, experiments and numerical applications. Springer, Berlin

    Google Scholar 

  • Bluhm J, de Boer R (1998) Biots poroelastizitätstheorie aus der Sicht der porösen Medien. Z Angew Math Mech 78:281–282

    Google Scholar 

  • Cowin SC, Hegedus DH (1976) Bone remodelling I: theory of adaptive elasticity. J Elast 6:313–326

    Article  MathSciNet  MATH  Google Scholar 

  • Dahmen U, Hall CA, Madrahimov N, Milekhin V, Dirsch O (2007) Regulation of hepatic microcirculation in stepwise liver resection. Acta Gastroenterol Belg 70:345–351

    Google Scholar 

  • de Boer R (1996) Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl Mech Rev 49:201–262

    Article  Google Scholar 

  • de Boer R (2000) Theory of porous media. Highlights in the historical development and current state. Springer, Heidelberg

    Google Scholar 

  • Dirsch O, Madrahimov N, Chaudri N, Deng M, Madrahimova F, Schenk A, Dahmen U (2008) Recovery of liver perfusion after focal outflow obstruction and liver resection. Transplantation 85:748–756

    Article  Google Scholar 

  • Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3–86

    Google Scholar 

  • Ehlers W, Acartürk A, Markert B (2003) A continuum approach for swelling of charged hydrated media. In: Wendland W (ed) Multifield problems-state of the art. Springer, Berlin, pp 271–277

    Google Scholar 

  • Eipper G (1998) Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Festkörpern. Dissertation, Bericht Nr. II-1 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart

    Google Scholar 

  • Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951–978

    Article  MATH  Google Scholar 

  • Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve SC (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52:1595–1625

    Article  MathSciNet  MATH  Google Scholar 

  • Garikipati K, Olberding JE, Narayanan H, Arruda EM, Grosh K, Calve S (2006) Biological remodelling: stationary energy, configurational change, internal variables and dissipation. J Mech Phys Solids 54:1493–1515

    Article  MathSciNet  MATH  Google Scholar 

  • Gleason RL, Taber LA, Humphrey JD (2004) A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. J Biomech Eng 126:371–381

    Article  Google Scholar 

  • Guillou A, Ogden RW (2006) Growth in soft biological tissue and residual stress development. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissue. Springer, Berlin, pp 47–62

    Chapter  Google Scholar 

  • Hall C (2006) Regulation der hepatischen Mikrozirkulation bei schrittweiser Resektion im Rattenlebermodell. Dissertation, Medizinische Fakultät der Universität Duisburg-Essen. Zentrum für Chirurgie Klinikum für Allgemeinchirurgie, Viszeral- und Transplantationschirurgie

    Google Scholar 

  • Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6:163–175

    Article  Google Scholar 

  • Himpel G (2008) Computational modeling of biomechanical phenomena-remodeling, growth and reorientation. Dissertation, Fachbereich Maschinenbau und Verfahrenstechnik der Technischen Universität Kaiserslautern, Germany

    Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer, New York

    Google Scholar 

  • Humphrey JD, Eberth JF, Dye WW, Gleason RL (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech 42:1–8

    Article  Google Scholar 

  • Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12:407–430

    Article  MathSciNet  MATH  Google Scholar 

  • Klisch SM, Dyke TJV, Hoger A (2001) A theory of volumetric growth for compressible elastic biological materials. Math Mech Solids 6:551–575

    Article  MATH  Google Scholar 

  • Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci, Mater Med 42:8811–8823

    Google Scholar 

  • Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth—a critical review, a classification of concepts and two new consistent approaches. Comput Mech 32:71–88

    Article  MATH  Google Scholar 

  • Kuhl E, Steinmann P (2003) On spatial and material settings of thermohyperelastodynamics for open systems. Acta Mech 160:179–217

    Article  MATH  Google Scholar 

  • Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behavior of articular cartilage. J Biomech Eng 113:245–258

    Article  Google Scholar 

  • Lee EH (1969) Elastic-plastic deformations at finite strains. J Appl Mech 36:1–6

    Article  MATH  Google Scholar 

  • Lu J-F, Hanyga A (2005) Linear dynamic model for porous media saturated by two immiscible fluids. Int J Solids Struct 42:2689–2709

    Article  MATH  Google Scholar 

  • Majno G, Joris I (1996) Cells, tissues, and disease. Blackwell Science, Oxford

    Google Scholar 

  • Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA (1989) Biphasic indentation of articular cartilage-II. A numerical algorithm and an experimental study. J Biomech 22:853–861

    Article  Google Scholar 

  • Nadeau RG, Groner W (2001) The role of a new noninvasive imaging technology in the diagnosis of anemia. J Nutr 131:1610–1614

    Google Scholar 

  • Ricken T, Bluhm J (2009) Evolutional growth and remodeling in multiphase living tissue. Comput Mater Sci 45:806–811

    Article  Google Scholar 

  • Ricken T, Bluhm J (2010) Remodeling and growth of living tissue: a multiphase theory. Arch Appl Mech 80:453–465

    Article  Google Scholar 

  • Ricken T, Schwarz A, Bluhm J (2007) A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput Mater Sci 39:124–136

    Article  Google Scholar 

  • Ricken T, Dahmen U, Dirsch O (2010) A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech Model Mechanobiol 9:435–450

    Article  Google Scholar 

  • Schanz M, Diebels S (2003) A comparative study of biot’s theory and the linear theory of porous media for wave propagation problems. Acta Mech 161:213–235

    MATH  Google Scholar 

  • Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–215

    Article  MATH  Google Scholar 

  • Taylor RL (2012) Feap—a finite element analysis program. http://www.ce.berkeley.edu/projects/feap/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Ricken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ricken, T., Dahmen, U., Dirsch, O., Werner, D.Q. (2013). A Biphasic 3D-FEM Model for the Remodeling of Microcirculation in Liver Lobes. In: Holzapfel, G., Kuhl, E. (eds) Computer Models in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5464-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5464-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5463-8

  • Online ISBN: 978-94-007-5464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics