Skip to main content

Modeling the Polyglutamine Aggregation Pathway in Huntington’s Disease: From Basic Studies to Clinical Applications

  • Chapter
  • First Online:
Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

Abstract

Huntington’s disease (HD) is among the polyglutamine (polyQ) disorders, which are caused by expansion of CAG-trinucleotide repeats. These disorders share common characteristics, and have thus long been thought to have a unifying pathogenic mechanism resulting from polyQ expansion. However, this scenario has recently become more complex, as studies have found multiple pathways for the assembly of disease-related polyQ protein aggregates that differ in both structure and toxicity. There are fascinating disease-specific aspects of the polyQ disorders, including the repeat-length dependence of both clinical features and the propensity of the expanded polyQ protein to aggregate. Such aggregation kinetics have proven useful in explaining the disease process. This chapter describes two risk-based stochastic kinetic models, the cumulative-damage and one-hit models, that describe genotype-phenotype correlations in patients with polyQ diseases and reflect alternative pathways of polyQ aggregation. Using repeat-length as an index, several models explore the quantitative connection between aggregation kinetics and clinical data from HD patients. The correlations between CAG repeat-length and age-of-onset are re-evaluated, and the rate of disease progression (as assessed by clinical measures and longitudinal imaging studies of brain structure) are surveyed. Finally, I present a mathematical model by which the time course of neurodegeneration in HD can be precisely predicted, and discuss the association of the models with the major controversies about HD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HD:

Huntington’s Disease

polyQ:

Polyglutamine

htt:

huntingtin

SCA:

Spino-Cerebellar Ataxia

SBMA:

spinal and Bulbar Muscular Atrophy

DRPLA:

Dentatorubral-Pallidoluysian Atrophy

QNE:

Quantified Neurological Examination

UPS:

Ubiquitin-Proteasome System

References

  • Abe Y, Tanaka F, Matsumoto M, Doyu M, Hirayama M, Kachi T, Sobue G (1995) CAG repeat number correlates with the rate of brainstem and cerebellar atrophy in Machado-Joseph disease. Neurology 51:882–884

    Article  Google Scholar 

  • Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, Graham RK, Hayden MR (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    Article  PubMed  CAS  Google Scholar 

  • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    Article  PubMed  CAS  Google Scholar 

  • Aylward EH, Codori AM, Barta PE, Pearlson GD, Harris GJ, Brandt J (1996) Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol 53:1293–1296

    Article  PubMed  CAS  Google Scholar 

  • Aylward EH, Codori AM, Rosenblatt A, Sherr M, Brandt J, Stine OC, Barta PE, Pearlson GD, Ross CA (2000) Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington’s disease. Mov Disord 15:552–560

    Article  PubMed  CAS  Google Scholar 

  • Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, Brandt J, Gourley LM, Liang K, Zhou H, Margolis RL, Ross CA (2004) Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 63:66–72

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya AM, Thanker AK, Wetzel R (2005) Polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci USA 102:15400–15405

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya A, Thakur AK, Chellgren VM, Thiagarajan G, Williams AD, Chellgren BW, Creamer TP, Wetzel R (2006) Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 355:524–535

    Article  PubMed  CAS  Google Scholar 

  • Biglan KM, Ross CA, Langbehn DR, Aylward EH, Stout JC, Queller S, Carlozzi NE, Duff K, Beglinger LJ, Paulsen JS, PREDICT-HD Investigators of the Huntington Study Group (2009) Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord 24:1763–1772

    Article  PubMed  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddel N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Berthelier V, Yang W, Wetzel R (2001) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 311:173–182

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Ferrone FA, Wetzel R (2002) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci USA 99:11884–11889

    Article  PubMed  CAS  Google Scholar 

  • Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR, Lumsden CJ, Mcinnes RR (2000) A one-hit model of cell death in inherited neuronal degeneration. Nature 406:195–199

    Article  PubMed  CAS  Google Scholar 

  • Clarke G, Lumsden CJ, Mcinnes RR (2001) Inherited neurodegenerative diseases: the one-hit model of neurodegeneration. Hum Mol Genet 10:2269–2275

    Article  PubMed  CAS  Google Scholar 

  • Clarke G, Lumsden CJ (2005) Scale-free neurodegeneration: cellular heterogeneity and the stretched exponential kinetics of cell death. J Theor Biol 233:515–525

    Article  PubMed  Google Scholar 

  • Colby DW, Cassady JP, Lin GC, Ingram VM, Wittrup KD (2006) Stochastic kinetics of intracellular huntingtin aggregate formation. Nat Chem Biol 2:319–323

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Putfarken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  • Davies JE, Sarkar S, Rubinsztein DC (2007) The ubiquitin proteasome system in Huntington’s disease and the spinocerebellar ataxias. BMC Biochem 8(Suppl 1):S2

    Article  PubMed  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  PubMed  CAS  Google Scholar 

  • Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC (2007) Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 62:1341–1346

    Article  PubMed  Google Scholar 

  • Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Wang C, Stout JC, Ross CA, Aylward E, Carlozzi NE, Queller S, Predict-HD, Investigators of the Huntington Study Group (2010) “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: evidence of early lack of awareness. J Neuropsychiatry Clin Neurosci 22:196–207

    Article  PubMed  Google Scholar 

  • Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274

    Article  PubMed  CAS  Google Scholar 

  • Ellisdon AM, Thomas B, Bottomley SP (2006) The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem 281:16888–16896

    Article  PubMed  CAS  Google Scholar 

  • Gatchel JR, Zoghbi HY (2005) Disease of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6:743–755

    Article  PubMed  CAS  Google Scholar 

  • Gidalevitz T, Ben-Zvi AB, Ho KH, Brignull HR, Morimoto RI (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–1474

    Article  PubMed  CAS  Google Scholar 

  • Gray DA, Tsirigotis M, Woulfe J (2003) Ubiquitin, proteasomes, and the aging brain. Sci Aging Knowledge Environ 2003:RE6

    PubMed  Google Scholar 

  • Gusella JF, MacDonald ME (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci 1:109–115

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Hilker R, Schweitzer K, Coburger S, Ghaemi M, Weisenbach S, Jacobs AH, Rudolf J, Herholz K, Heiss WD (2005) Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 62:378–382

    Article  PubMed  Google Scholar 

  • Hobbs NZ, Barnes J, Frost C, Henley SMD, Wild EJ, Macdonald K, Barker RA, Scahill RJ, Fox NC, Tabrizi SJ (2010) Onset and progression of pathologic atrophy in Huntington disease: a longitudinal MR imaging study. Am J Neuroradiol 31:1036–1041

    Article  PubMed  CAS  Google Scholar 

  • Huynh DP, Figueroa K, Hoang N, Pulst SM (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 26:44–50

    Article  PubMed  CAS  Google Scholar 

  • Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Sang C, Kobayashi Y, Doyu M, Sobue G (2002) Teststerone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35:843–854

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    Article  PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Lee HS, LaForet G, McIntyre C, Martin EJ, Chang P, Kim TW, Williams M, Reddy PH, Tagle D, Boyce FM, Won L, Heller A, Aronin N, DiFiglia M (1999) Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J Neurosci 19:964–973

    PubMed  CAS  Google Scholar 

  • Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95:41–53

    Article  PubMed  CAS  Google Scholar 

  • Langbehn DR, Hayden MR, Paulsen JS (2010) PREDICTHDInvestigators of the Huntington Study Group. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 153B:397–408

    PubMed  CAS  Google Scholar 

  • La Spada AR, Fu YH, Sopher BI, Libby RT, Wang X, Li LY, Einum DD, Huang J, Possin DE, Smith AC, Martinez RA, Koszdin KL, Treuting PM, Ware CB, Hurley JB, Ptacek LJ, Chen S (2001) Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 31:913–927

    Article  PubMed  CAS  Google Scholar 

  • Legleiter J, Mitchell E, Lotz GP, Sapp E, Ng C, DiFiglia M, Thompson LM, Muchowski PJ (2010) Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J Biol Chem 285:14777–14790

    Article  PubMed  CAS  Google Scholar 

  • Li M, Chevalier-Larsen ES, Merry DE, Diamond MI (2007) Soluble androgen receptor oligomers underlie pathology in a mouse model of spinobulbar muscular atrophy. J Biol Chem 282:3157–3164

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Mayer J, Landon M, Layfield R (2001) Ubiquitin and the molecular pathology of neurodegenerative diseases. Adv Exp Med Biol 487:169–186

    Article  PubMed  CAS  Google Scholar 

  • Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, Dawson DM, Sudarsky L, Guimaraes J, Loureiro JEL, Nezarati MM, Corwin LI, Lopes-Cendes I, Rooke K, Rosenberg R, MacLeod P, Farrer LA, Sequeiros J, Rouleau GA (1995) Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet 57:54–61

    PubMed  CAS  Google Scholar 

  • Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, McCutcheon K, Singaraja R, Kazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F, Hayden MR (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 18:150–154

    Article  PubMed  CAS  Google Scholar 

  • Maruyama H, Nakamura S, Matsuyama Z, Sakai T, Doyu M, Sobue G, Seto M, Tsujihata M, Oh-i T, Nishino T, Sunohara N, Takahashi R, Hayashi M, Nishino I, Ohtake T, Oda T, Nishimura M, Saida T, Matsumoto H, Baba M, Kawaguchi Y, Kakizuka A, Kawakami H (1995) Molecular features of the CAG repeats and clinical manifestation of Machado-Joseph disease. Hum Mol Genet 4:807–812

    Article  PubMed  CAS  Google Scholar 

  • Masino L, Nicastro G, Menon RP, Dal Piaz F, Calder L, Pastore A (2004) Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J Mol Biol 344:1021–1035

    Article  PubMed  CAS  Google Scholar 

  • Miller J, Arrasate M, Shaby BA, Mitra S, Masliah E, Finkbeiner S (2010) Quantitative relationships between huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into Huntington’s disease molecular pathogenesis. J Neurosci 30:10541–10550

    Article  PubMed  CAS  Google Scholar 

  • Mitra S, Tsvetkov AS, Finkbeiner S (2009) Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease. J Biol Chem 284:4398–4403

    Article  PubMed  CAS  Google Scholar 

  • Morfini G, Pigino G, Brady ST (2005) Polyglutamine expansion diseases: failing to deliver. Trends Mol Med 11:64–70

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Sanjuan I, Bates GP (2011) The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J Clin Invet 121:476–483

    Article  CAS  Google Scholar 

  • Nagai Y, Inui T, Popiel HA, Fujikake N, Hasegawa K, Urade Y, Goto Y, Naiki H, Toda T (2007) A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 14:332–340

    Article  PubMed  CAS  Google Scholar 

  • Nandhagopal R, Kuramoto L, Schulzer M, Mak E, Cragg J, Lee CS, Mckenzie J, McCormick S, Samii A, Troiano A, Ruth TJ, Sossi V, Fuente-Fernandez R, Calne DB, Stoessl AJ (2009) Longitudinal progression of sporadic Parkinson’s disease: a multi-tracer positron emission tomography study. Brain 132:2970–2979

    Article  PubMed  CAS  Google Scholar 

  • Nekooki-Machida Y, Kurosawa M, Nukina N, Ito K, Oda T, Tanaka M (2009) Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc Natl Acad Sci USA 106:9679–9684

    Article  PubMed  CAS  Google Scholar 

  • Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM, Ross CA (2001) Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291:2423–2428

    Article  PubMed  CAS  Google Scholar 

  • Olshina MA, Angley LM, Ramdzan YM, Tang J, Bailey MF, Hill AF, Hatters DM (2010) Tracking mutant huntingtin aggregation kinetics in cells reveals three major populations that include an invariant oligomer pool. J Biol Chem 285:21807–21816

    Article  PubMed  CAS  Google Scholar 

  • O’Nuallain B, Thanker AK, Williams AD, Bhattacharyya AM, Chen S, Thiagarajan G, Wetzel R (2006) Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. Methods Enzymol 413:34–74

    Article  PubMed  Google Scholar 

  • Oosawa F, Kasai M (1962) A theory of linear and helical aggregations of macromolecules. J Mol Biol 4:10–21

    Article  PubMed  CAS  Google Scholar 

  • Ortega Z, Diaz-Hernandez M, Lucas JJ (2007) Is the ubiquitin-proteasome system impaired in Huntington’s disease? Cell Mol Life Sci 64:2245–2257

    Article  PubMed  CAS  Google Scholar 

  • Orr HT, Zoghbi HY (2001) SCA1 molecular genetics: a history of a 13 year collaboration against glutamines. Hum Mol Genet 10:2307–2311

    Article  PubMed  CAS  Google Scholar 

  • Osmand AP, Berthelier V, Wetzel R (2006) Imaging polyglutamine deposits in brain tissue. Methods Enzymol 412:106–122

    Article  PubMed  CAS  Google Scholar 

  • Paulson HL (2007) Dominantly inherited ataxias: lessons learned from Machado-Joseph disease/spinocerebellar ataxia type 3. Semin Neurol 27:133–142

    Article  PubMed  Google Scholar 

  • Perutz MF, Windle AH (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412:143–144

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Finch JT, Berriman J, Lesk A (2002) Amyloid fibers are water-filled nanotubes. Proc Natl Acad Sci USA 99:5591–5595

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt A, Margolis RL, Becher MW, Aylward E, Franz ML, Sherr M, Abbott MH, Lian KY, Ross CA (1998) Does CAG repeat number predict the rate of pathological changes in Huntington’s disease? Ann Neurol 44:708–709

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt A, Liang, K-Y, Zhou H, Abbott MH, Gourley LM, Margolis RL, Brandt J, Ross CA (2006) The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Ross CA (1997) Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35:819–822

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:10–17

    Article  Google Scholar 

  • Ruocco HH, Bonilha L, Li LM, Lopes-Cendes I, Cendes F (2008) Longitudinal analysis of regional grey matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry 79:130–135

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusion. Cell 95:55–66

    Article  PubMed  CAS  Google Scholar 

  • Saunders HM, Bottomley SP (2009) Multi-domain misfolding: understanding the aggregation pathway of polyglutamine proteins. Protein Eng Des Sel 22:447–451

    Article  PubMed  CAS  Google Scholar 

  • Schwarz J, Storch A, Koch W, Pogarell O, Radau PE, Tatsch K (2004) Loss of dopamine transporter binding in Parkinson’s disease follows a single exponential rather than linear decline. J Nucl Med 45:1694–1697

    PubMed  CAS  Google Scholar 

  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 1502:139–144

    Article  PubMed  CAS  Google Scholar 

  • Sugaya K, Matsubara S, Kagamihara Y, Kawata A, Hayashi H (2007) Polyglutamine expansion mutation yield a pathological epitope linked to nucleation of protein aggregate: determinant of Huntington’s disease onset. PLoS ONE 2:e635

    Article  PubMed  Google Scholar 

  • Sugaya K, Matsubara S (2009) Nucleation of protein aggregation kinetics as a basis for genotype-phenotype correlations in polyglutamine diseases. Mol Neurodegener 4:e29

    Article  Google Scholar 

  • Sugaya K, Matsubara S (2012) Quantitative connection between polyglutamine aggregation kinetics and neurodegenerative process in patients with Huntington’s disease. Mol Neurodegener 7:e20

    Google Scholar 

  • Szabo A (1988) Fluctuations in the polymerization of sickle hemoglobin: A simple analytic model. J Mol Biol 199:539–542

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O (2008) Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 17:345–356

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Katada S, Onodera O (2010) Polyglutamine diseases: where does toxicity come from? What is toxicity? Where are we going? J Mol Cell Biol 2:180–191

    Article  PubMed  CAS  Google Scholar 

  • Takeyama K, Ito S, Yamamoto A, Tanimoto H, Furutani T, Kanuka H, Miura M, Tabata T, Kato S (2002) Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in drosophila. Neuron 35:855–864

    Article  PubMed  CAS  Google Scholar 

  • Uversky VM (2010) Mysterious oligomerization of the amyloidogenic proteins. FEBS J 277:2940–2953

    Article  PubMed  CAS  Google Scholar 

  • van de Warrenburg BP, Hendriks H, Dürr A, van Zuijelen MC, Stevanin G, Camuzat A, Sinke RJ, Brice A, Kremer BP (2005) Age at onset variance analysis in spinocerebellar ataxias: a study in Dutch-French cohort. Ann Neurol 57:505–512

    Article  PubMed  Google Scholar 

  • Watase K, Barrett CF, Miyazaki T, Ishiguro T, Ishikawa K, Hu Y, Unno T, Sun Y, Kasai S, Watanabe M, Gomez CM, Mizusawa H, Tsien RW, Zoghbi HY (2008) Spinocerebellar ataxia type 6 knock in mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant Cav2.1 channels. Proc Natl Acad Sci USA 105:11987–11992

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Kao S-Y, Lee FJS, Song W, Jin L-W, Yankner BA (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  PubMed  CAS  Google Scholar 

  • Yu ZX, Li SH, Nguyen HP, Li XJ (2002) Huntingtin inclusions do not deplete polyglutamine-containing transcription factors in HD mice. Hum Mol Genet 11:905–914

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keizo Sugaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sugaya, K. (2012). Modeling the Polyglutamine Aggregation Pathway in Huntington’s Disease: From Basic Studies to Clinical Applications. In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_15

Download citation

Publish with us

Policies and ethics