Skip to main content

Automated Prototype Generation for Multi-color Karyotyping

  • Chapter
Color Medical Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 6))

  • 1637 Accesses

Abstract

This chapter presents an algorithm for automatically generating a prototype from multicolor karyotypes obtained via multi-spectral imaging of human chromosomes. The single representative prototype of the color karyotype that is generated represents the analytical integration of a group of karyotypes obtained via Multicolor Fluorescence In Situ Hybridization (MFISH) method. Multicolor karyotyping is a 24-color MFISH method that allows simultaneous screening of the genome. It allows for the detection of a wide variety of anomalies in human chromosomes, including subtle and complex rearrangements. Although, multicolor karyotyping allows visual detection of gross anomalies, misclassified pixels make manual examination difficult. Additionally, in the absence of prior knowledge of the anomaly, interpretation of the karyotypes can be ambiguous. In this study we have developed an automated method for the generation of a single representative prototype of the color karyotype, which assists the screening of chromosomal aberrations by computational removal of non-physiological anomalies. We hypothesize that generation of a single representative prototype of the color karyotype from multiple karyotypes (k) for a given specimen can highlight all the aberrations, while minimizing misclassified pixels arising from inconsistencies in sample preparation, hybridization and imaging procedures. A three-tier approach is implemented to achieve the generation of the representative color karyotype from a set of multiple (>2) karyotypes. The first step involves the automated extraction of individual chromosomes from each karyotype in the set, followed by chromosome straightening and size normalization. In the second step, the extracted and normalized chromosomes belonging to each of the 24 color classes are automatically assigned to a particular group (1, 2, 3, etc.) based on the ploidy level (monoploid, diploid, triploid, etc.), respectively. For automated group assignment, Bayesian classification is utilized to determine the probability that a particular chromosome belongs to a specific group based on the similarity between the chromosomes within the group. Similarity is evaluated using two distance metrics: (1) two-dimensional (2D) histogram based descriptors, and (2) Eigen space representation based on Principal Component Analysis (PCA). Finally in the third step, we compute the prototype of the color karyotype by generating the representative chromosome for each group in the 24 color classes using pixel-based fusion. This approach allows us to generate the representative prototype color karyotype that reflects all anomalies for a given specimen, while rejecting non-physiological inconsistencies. Furthermore, automation not only reduces the workload, but also allows alleviation of subjectivity by providing a quantitative formulation based on statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tjio JH, Levan A (1956) The chromosome number of man. Hereditas 42(1–2):1–6

    Google Scholar 

  2. Bayani JM, Squire JA (2002) Applications of SKY in cancer cytogenetics. Cancer Investig 20(3):373–386

    Article  Google Scholar 

  3. Carpenter NJ (2001) Molecular cytogenetics. Semin Pediatr Neurol 8(3):135–146

    Article  Google Scholar 

  4. Castleman KR, Melnyk J, Frieden HJ, Persinger GW, Wall RJ (1976) Karyotype analysis by computer and its application to mutagenicity testing of environmental chemicals. Mutat Res 41(1):153–161

    Article  Google Scholar 

  5. Lee C, Lemyre E, Miron PM, Morton CC (2001) Multicolor fluorescence in situ hybridization in clinical cytogenetic diagnostics. Curr Opin Pediatr 13(6):550–555

    Article  Google Scholar 

  6. Lundsteen C, Lind AM, Granum E (1976) Visual classification of banded human chromosomes. I. Karyotyping compared with classification of isolated chromosomes. Ann Hum Genet 40(1):87–97

    Article  Google Scholar 

  7. Swansbury J (2003) Introduction to the analysis of the human G-banded karyotype. Methods Mol Biol 220:259–269

    Google Scholar 

  8. Todd R, Donoff RB, Wong DT (2000) The chromosome: cytogenetic analysis and its clinical application. J Oral Maxillofac Surg 58(9):1034–1039

    Article  Google Scholar 

  9. Anderson R (2010) Multiplex fluorescence in situ hybridization (M-FISH). Methods Mol Biol 659:83–97

    Article  Google Scholar 

  10. Speicher MR, Ward DC (1996) The coloring of cytogenetics. Nat Med 2(9):1046–1048

    Article  Google Scholar 

  11. Liehr T, Starke H, Weise A, Lehrer H, Claussen U (2004) Multicolor FISH probe sets and their applications. Histol Histopathol 19(1):229–237

    Google Scholar 

  12. Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273(5274):494–497

    Article  Google Scholar 

  13. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12(4):368–375

    Article  Google Scholar 

  14. Odero MD, Carlson K, Calasanz MJ, Lahortiga I, Chinwalla V, Rowley JD (2001) Identification of new translocations involving ETV6 in hematologic malignancies by fluorescence in situ hybridization and spectral karyotyping. Genes Chromosom Cancer 31(2):134–142

    Article  Google Scholar 

  15. Castleman KR, Eils R, Morrison L, Piper J, Saracoglu K, Schulze MA, Speicher MR (2000) Classification accuracy in multiple color fluorescence imaging microscopy. Cytometry 41(2):139–147

    Article  Google Scholar 

  16. Garini Y, Gil A, Bar-Am I, Cabib D, Katzir N (1999) Signal to noise analysis of multiple color fluorescence imaging microscopy. Cytometry 35(3):214–226

    Article  Google Scholar 

  17. Rens W, Yang F, O’Brien PC, Solanky N, Ferguson-Smith MA (2001) A classification efficiency test of spectral karyotyping and multiplex fluorescence in situ hybridization: identification of chromosome homologies between homo sapiens and hylobates leucogenys. Genes Chromosom Cancer 31(1):65–74

    Article  Google Scholar 

  18. Strefford JC, Lillington DM, Young BD, Oliver RT (2001) The use of multicolor fluorescence technologies in the characterization of prostate carcinoma cell lines: a comparison of multiplex fluorescence in situ hybridization and spectral karyotyping data. Cancer Genet Cytogenet 124(2):112–121

    Article  Google Scholar 

  19. Lee C, Gisselsson D, Jin C, Nordgren A, Ferguson DO, Blennow E, Fletcher JA, Morton CC (2001) Limitations of chromosome classification by multicolor karyotyping. Am J Hum Genet 68(4):1043–1047

    Article  Google Scholar 

  20. Azofeifa J, Fauth C, Kraus J, Maierhofer C, Langer S, Bolzer A, Reichman J, Schuffenhauer S, Speicher MR (2000) An optimized probe set for the detection of small interchromosomal aberrations by use of 24-color FISH. Am J Hum Genet 66(5):1684–1688

    Article  Google Scholar 

  21. Jalal SM, Law ME (1999) Utility of multicolor fluorescent in situ hybridization in clinical cytogenetics. Genet Med 1(5):181–186

    Article  Google Scholar 

  22. Knutsen T, Gobu V, Knaus R, Reid T, Sirotkin K (2002) The SKY/CGH database for spectral karyotyping and comparative genomic hybridization data. In: McEntyre J, Ostell J (eds) The NCBI handbook national center for biotechnology information, USA, Bethesda, MD

    Google Scholar 

  23. SD de Carvalho CR B (2003) A software tool to straighten curved chromosome images. Chromosom Res 11(1):83–88

    Article  Google Scholar 

  24. Javan-Roshtkhari M, Setarehdan SK (2007) A new approach to automatic classification of the curved chromosomes. In: Proceedings of the 5th international symposium on image and signal processing and analysis, vol 1, pp 19–24

    Chapter  Google Scholar 

  25. Choi HI, Choi SW, Moon HP (1997) Mathematical theory of medial axis transform. Pac J Math 181(1):57–88

    Article  MathSciNet  Google Scholar 

  26. Merchant FA, Good KN, Choi H, Castleman KR (2002) Automated detection of chromosomal rearrangements in multicolor fluorescence in-situ hybridization images. In: Proceedings of the second joint IEEE EMBS/BMES conference, vol 2, pp 1074–1075

    Google Scholar 

  27. Beran R (1977) Minimum Hellinger distance estimates for parametric models. Ann Stat 5(3):445–463

    Article  MathSciNet  MATH  Google Scholar 

  28. Sampat MP, Bovik AC, Aggarwal JK, Castleman KR (2005) Supervised parametric and non-parametric classification of chromosome images. Pattern Recognit 38(8):1209–1223

    Article  Google Scholar 

  29. M-FISH chromosome imaging database (2012). http://live.ece.utexas.edu/research/mfish.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Merchant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, X., Shah, S., Merchant, F. (2013). Automated Prototype Generation for Multi-color Karyotyping. In: Celebi, M., Schaefer, G. (eds) Color Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5389-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5389-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5388-4

  • Online ISBN: 978-94-007-5389-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics