Skip to main content

Development of a Test to Simulate Wave Impact on Composite Sandwich Marine Structures

  • Chapter
  • First Online:
Dynamic Failure of Composite and Sandwich Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 192))

Abstract

Wave impact is a potentially damaging load case not only for fast ships and racing yachts but also for wave energy devices and signal buoys. This chapter describes the development and analysis of a test designed to simulate the response of composite and sandwich marine structures subjected to wave impact. First a brief overview of previous work on impact of composites and sandwich materials is given, and existing tests to study wave slamming are discussed. The development of a medicine ball test is then described, and examples of results from tests on various sandwich panels are given. Finally, the evolution from a qualitative to a quantitative test is described, FE modelling is discussed and examples of results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies P (2012) Marine composites. In: Nicolais L, Borzacchiello A (eds) Wiley Encyclopedia of Composites. Wiley, Oxford

    Google Scholar 

  2. Lonno A, Hellbratt SE (1989) Use of carbon fibre in a 63m high-speed vessel for the Swedish Navy. In: Proceedings of the 3rd international conference on sandwich construction, Southampton

    Google Scholar 

  3. Hellbratt S-E (2003) Experiences from design and production of the 72 m CFRP-sandwich corvette visby. In: Proceedings of the 6th international conference on sandwich construction. CRC Press, Fort Lauderdale, pp 15–24

    Google Scholar 

  4. Cantwell WJ, Morton J (1991) The impact resistance of composite materials – a review. Composites 22(5):347–362

    Article  Google Scholar 

  5. Abrate S (1998) Impact on sandwich structures. Cambridge University Press, Cambridge

    Google Scholar 

  6. Reid SR, Zhou G (eds) (2000) Impact behaviour of fibre-reinforced composite materials and structures. Woodhead Publishing, Cambridge

    Google Scholar 

  7. Sutherland LS, Soares CG (1999) Effects of laminate thickness and reinforcement type on the impact behaviour of E-glass/polyester laminates. Compos Sci Technol 59(15):2243–2260

    Article  Google Scholar 

  8. Sutherland LS, Soares CG (2006) Impact behaviour of typical marine composite laminates. Compos Part B 37:89–100

    Article  Google Scholar 

  9. Sutherland LS, Soares CG (2007) Scaling of impact on low fibre-volume glass–polyester laminates. Compos Part A 38(2):307–317

    Article  Google Scholar 

  10. Johnson HE, Louca LA, Mouring S, Fallah AS (2009) Modelling impact damage in marine composite panels. Int J Impact Eng 36(1):25–39

    Article  Google Scholar 

  11. Alderson KL, Evans KE (1992) Low velocity transverse impact of filament-wound pipes: part 1. Damage due to static and impact loads. Compos Struct 20:37–45

    Article  Google Scholar 

  12. Alderson KL, Evans KE (1992) Failure mechanisms during the transverse loading of filament-wound pipes under static and low velocity impact conditions. Composites 23(3):167–173

    Article  Google Scholar 

  13. Curtis J, Hinton MJ, Li S, Reid SR, Soden PD (2000) Damage, deformation and residual burst strength of filament-wound composite tubes subjected to impact or quasi-static indentation. Compos Part B 31:419–433

    Article  Google Scholar 

  14. Gning PB, Tarfaoui M, Collombet F, Riou L, Davies P (2005) Damage development in thick composite tubes under impact loading and influence on implosion pressure: experimental observations. Compos Part B 36(4):306–318

    Article  Google Scholar 

  15. Gullberg O, Olsson K-A (1990) Design and construction of GRP sandwich ship hulls. Mar Struct 3(2):93–109

    Article  Google Scholar 

  16. Remen W (1992) The use of FRP sandwich. In: Davies P, Lemoine L (eds) Proceedings of the nautical construction with composite materials, Paris, Dec, Ifremer editions, pp 432–439

    Google Scholar 

  17. Bull PH, Edgren F (2004) Compressive strength after impact of CFRP-foam core sandwich panels in marine applications. Compos Part B 35(6–8):535–541

    Article  Google Scholar 

  18. Hall DJ, Robson BL (1984) A review of the design and materials evaluation programme for the GRP/foam sandwich composite hull of the RAN minehunter. Composites 15(4):266–276

    Article  Google Scholar 

  19. Feichtinger KA (1991) Test methods and performance of structural core materials – IIA-Strain rate dependence of shear properties. Composites 1(Jan-Feb):37–47

    Google Scholar 

  20. Van Gellhorn E, Reif G (1992) Think dynamic – dynamic test data for the design of dynamically loaded structures. In: Proceedings of the 2nd sandwich constructions conference, Gainesville, Florida, USA, pp 541–557

    Google Scholar 

  21. Davies P, Baizeau R, Wahab A, Pecault S, Collombet F, Lataillade J-L (1998) Determination of material properties for structural sandwich calculations: from creep to impact loading. In: Vautrin A (ed) Mechanics of sandwich structures. Kluwer Publishers, Dordrecht

    Google Scholar 

  22. Tagarielli VL, Deshpande VS, Fleck NA (2008) The high strain rate response of PVC foams and end-grain balsa wood. Compos Part B 39(1):83–91

    Article  Google Scholar 

  23. Mines RAW, Worrall CM, Gibson AG (1994) The static and impact behaviour of polymer composite sandwich beams. Composites 25(2):95–110

    Article  Google Scholar 

  24. Mines RAW, Alias A (2002) Numerical simulation of the progressive collapse of polymer composite sandwich beams under static loading. Compos Part A 33(1):11–26

    Article  Google Scholar 

  25. Atas C, Sevim C (2010) On the impact response of sandwich composites with cores of balsa wood and PVC foam. Compos Struct 93(1):40–48

    Article  Google Scholar 

  26. Schubel PM, Luo J-J (2005) Daniel IM low velocity impact behavior of composite sandwich panels. Compos Part A: 36(10):1389–1396

    Article  Google Scholar 

  27. Zenkert D, Shipsha A, Bull P, Hayman B (2005) Damage tolerance assessment of composite sandwich panels with localised damage. Compos Sci Technol 65:2597–2611

    Article  Google Scholar 

  28. Zenkert D, Burman M (2009) Tension, compression and shear fatigue of a closed cell polymer foam. Compos Sci Technol 69:785–792

    Article  Google Scholar 

  29. Herup EJ, Palazotto AN (1997) Low velocity impact damage initiation in graphite/epoxy/nomex honeycomb sandwich plates. Compos Sci Technol 57:1581–1598

    Article  Google Scholar 

  30. Andersen T, Madenci E (2000) Experimental investigation of low velocity impact characteristics of sandwich composites. Compos Struct 50:239–247

    Article  Google Scholar 

  31. Meo M, Vignjevic R, Marengo G (2005) The response of honeycomb sandwich panels under low velocity impact loading. Int J Mech Sci 47:1301–1325

    Article  Google Scholar 

  32. Heimbs S, Schmeer S, Middendorf P, Maier M (2007) Strain rate effects in phenolic composites and phenolic impregnated honeycomb structures. Compos Sci Technol 67:2827–2837

    Article  Google Scholar 

  33. Bouvet C, Castanié B, Bizeul M, Barrau JJ (2009) Low velocity impact modelling in laminate composite panels with discrete interface elements. Int J Solids Struct 46(14–15):2809–2821

    Article  MATH  Google Scholar 

  34. Cantwell WJ, Scudamore R, Ratcliffe J, Davies P (1999) Interfacial fracture in sandwich laminates. Compos Sci Technol 59(14):2079–2085

    Article  Google Scholar 

  35. Li X, Weitsman J (2004) Sea-water effects on foam-cored composite sandwich lay-ups. Compos Part B 35(6–8):451–459

    Article  Google Scholar 

  36. Veazie DR, Robinson KR, Shivakumar K (2004) Effects of the marine environment on the interfacial fracture toughness of PVC core sandwich composites. Compos Part B 35(6–8):461–466

    Article  Google Scholar 

  37. Avilés F, Aguilar-Montero M (2010) Mechanical degradation of foam-cored sandwich materials exposed to high moisture. Compos Struct 92(1):122–129

    Article  Google Scholar 

  38. Kolat K, Neşer G, Özes C (2007) The effect of sea water exposure on the interfacial fracture of some sandwich systems in marine use. Compos Struct 78(1):11–17

    Article  Google Scholar 

  39. Ulven CA, Vaidya UK (2006) Post-fire low velocity impact response of marine grade sandwich composites. Compos Part A 37(7):997–1004

    Article  Google Scholar 

  40. Croquette J, Baudin M (1992) Commonly used composite materials: fire behaviour. In: Davies P, Lemoine L (eds) Proceedings of the nautical construction with composite materials, Paris, Dec, Ifremer editions, pp 287–297

    Google Scholar 

  41. Mouritz AP, Feih S, Kandare E, Mathys Z, Gibson AG, Des Jardin PE, Case SW, Lattimer BY (2009) Review of fire structural modelling of polymer composites. Compos Part A 40(12):1800–1814

    Article  Google Scholar 

  42. Mouritz AP, Mathys Z (1999) Post fire mechanical properties of marine polymer composites. Compos Struct 47:643–653

    Article  Google Scholar 

  43. Choqueuse D, Baizeau R, Davies P (1999) Experimental studies of impact on marine composites. In: Proceedings of the ICCM12, Paris

    Google Scholar 

  44. Sellars FH (1976) Water impact loads. Mar Technol 13(1):46–58

    Google Scholar 

  45. Bishop R, Price WG, Tam PKY (1978) On the dynamics of slamming. Trans R Inst Nav Archit 120:259–280

    Google Scholar 

  46. Mizoguchi S, Tanizawa K (1996) Impact wave loads due to slamming – a review. Ship Technol Res 43:139–154

    Google Scholar 

  47. Faltinsen OM (1990) Sea loads on ships and offshore structures. Cambridge University Press, Cambridge

    Google Scholar 

  48. Faltinsen OM (2000) Hydroelastic slamming. J Mar Sci Technol 5:49–65

    Article  Google Scholar 

  49. Faltinsen OM, Chezhian M (2005) A generalized wagner method for three-dimensional slamming. J Ship Res 49(4):279–287

    Google Scholar 

  50. ISO/FDIS 122155 (2006) Hull construction – scantlings – part 5: design pressure for monohulls, design stresses, scantlings determination

    Google Scholar 

  51. Baur P, Roy A, Casari P, Choqueuse D, Davies P (2004) Structural mechanical testing of a full-size adhesively bonded motorboat. Proc J Eng Marit Environ I Mech E Part M 218:259–266

    Google Scholar 

  52. Baley C, Cailler M (1992) Experimental and numerical behaviour of the structure of a 7.7 m sailing boat at sea. In: Proceedings of international conference on nautical construction with composite materials. IFREMER publication, Paris, pp 423–431. ISBN 2905434449

    Google Scholar 

  53. Aksu S, Price WG, Suhrbier KR, Temarel P (1993) A comparative study of the dynamic behaviour of a fast patrol boat travelling in rough seas. Mar Struct 6(5–6):421–441

    Article  Google Scholar 

  54. Manganelli P, Wilson PA (2001) An experimental investigation of slamming on ocean racing yachts. In: Proceedings of the 15th Chesapeake sailing yacht symposium, Chesapeake Bay, Maryland, USA

    Google Scholar 

  55. Qin Z, Batra RC (2009) Local slamming impact of composite sandwich hulls. Int J Solids Struct 46:2011–2035

    Article  MATH  Google Scholar 

  56. Hayman B, Haug T, Valsgard S (1991) Response of fast craft hull structures to slamming loads. In: Proceedings of the FAST’91, Trondheim, Norway, pp 381388

    Google Scholar 

  57. Hayman B, Haug T, Valsgard S (1992) Slamming drop tests on a GRP sandwich hull model. In: Proceedings of the 2nd conference on sandwich construction, EMAS, Gainesville, Florida, USA

    Google Scholar 

  58. Charca S, Shafiq B (2010) Damage assessment due to single slamming of foam core sandwich composites. J Sandw Struct Mater 12:97–112

    Article  Google Scholar 

  59. Reichard RP (1992) Pressure loading of FRP panels for marine structures. In: Proceedings of the international conference on nautical construction with composite materials. IFREMER Publication, Paris, pp 231–245

    Google Scholar 

  60. Tveitnes T, Fairlie-Clarke AC, Varyana K (2008) An experimental investigation into the constant velocity water entry of wedge shaped sections. Ocean Eng 35:1463–1478

    Article  Google Scholar 

  61. Huera-Huarte FJ, Gharib DJM (2011) Experimental investigation of water slamming loads on panels. Ocean Eng 38:1347–1355

    Article  Google Scholar 

  62. Panciroli P, Abrate S, Minak G, Zucchelli A (2012) Hydroelasticity in water entry problems: Comparison between experimental and SPH results. Compos Struct 94(2):532–539

    Article  Google Scholar 

  63. Jensen AE, Havsgard GB, Pran K, Wang G, Vohra ST, Davis MA, Dandridge A (2000) Wet deck slamming experiments with a FRP sandwich panel using a network of 16 fibre optic Bragg grating strain sensors. Compos Part B 31:187–198

    Article  Google Scholar 

  64. Downs-Honey R, Erdinger S, Battley M (2006) Slam testing of sandwich panels. SAMPE J 42(4):47–55

    Google Scholar 

  65. Battley MA, Lake SE (2007) Dynamic performance of sandwich core materials. In: Proceedings of the International Conference on Composite Materials (ICCM16), Kyoto, Japan

    Google Scholar 

  66. Battley M, Allen T, Pehrson P, Stenius I, Rosen A (2010) Effects of panel stiffness on slamming responses of composite hull panels. In: Proceedings of the International Conference on Composite Materials (ICCM-17), Edinburgh

    Google Scholar 

  67. Morton J (1988) Scaling of impact loaded carbon fiber composites. AIAA J 26(8):989–994

    Article  Google Scholar 

  68. Swanson SR (1993) Dynamic and scaling effects in impact of composite structures. In: Proceedings of the International Conference on Composite Materials (ICCM9), vol 5, Madrid, pp 291–298

    Google Scholar 

  69. Baral N, Cartié DDR, Partridge IK, Baley C, Davies P (2010) Improved impact performance of marine sandwich panels using through-thickness reinforcement: experimental results. Compos Part B 41(2):117–123

    Article  Google Scholar 

  70. Davies P, Choqueuse D, Bigourdan B, Devaux H, Robert S (2010) Wave impact resistance of racing yacht composites. JEC Mag 59:28–29

    Google Scholar 

  71. Davies P, Choqueuse D, Bigourdan B, Baral N, Cartié DDR, Partridge IK, Baley C (2010) Pinned foam core sandwich for improved damage tolerance of racing multi-hull yachts. In: Proceedings of the International Conference on Composite Materials (ICCM-17), Edinburgh

    Google Scholar 

  72. Lolive E, Davies P, Casari P (2005) Loading rate effects on foam cores for marine composite structures. In: Proceedings of the ICCS, Aalborg, Denmark

    Google Scholar 

  73. Charca S, Shafiq B, Just F (2010) Repeated slamming of foam core composite sandwich panels on water. In: Proceedings of the International Conference on Composite Materials (ICCM-17), Edinburgh

    Google Scholar 

  74. Das K, Batra RC (2011) Local water slamming impact on composite sandwich hulls. J Fluid Struct 27:523–551

    Article  Google Scholar 

  75. ADINA theory & modeling guide. Report ARD 087. ADINA R&D, Inc. February (2008)

    Google Scholar 

  76. Bathe K-J (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  77. Ling HI, Callisto L, Leshchinsky D, Koseki J (2007) Soil stress–strain behavior: measurement, modeling and analysis. In: A collection of papers of the geotechnical symposium in Rome, Springer Solid Mechanics and its Applications, vol 146, 16–17 Mar 2006

    Google Scholar 

  78. Cameron DA, Carter JP (2009) A constitutive model for sand based on non-linear elasticity and the state parameter. Comput Geotech 36(7):1219–1228

    Article  Google Scholar 

  79. Delfosse-Ribay E, Djeran-Maigre I, Cabrillac R, Gouvenot D (2004) Shear modulus and damping ratio of grouted sand. Soil Dyn Earthq Eng 24(6):461–471

    Article  Google Scholar 

  80. Blázquez R, López-Quero S (2006) Generalized densification law for dry sand subjected to dynamic loading. Soil Dyn Earthq Eng 26(9):888–898

    Article  Google Scholar 

  81. Bahaj AS (2011) Generating electricity from the oceans. Renew Sustain Energy Rev 15(7):3399–3416

    Article  MathSciNet  Google Scholar 

  82. Blommaert C,Van Paepegem W, Dhondt P, De Backer PG, Degrieck J, De Rouck J, Vantorre M, Van Slycken J, De Baere I, De Backer H, Vierendeels J, De Pauw P, Matthys S, Taerwe L (2010) Large scale slamming tests on composite buoys for wave energy applications. In: Proceeding of the 17th International Conference on Composite Materials (ICCM17), Edinburgh

    Google Scholar 

  83. Det Norske Veritas (DNV) Classification notes no. 30.5, environmental conditions and environmental loads, section 6, wave and current loads, March 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, P., Bigourdan, B., Choqueuse, D., Lacotte, N., Forest, B. (2013). Development of a Test to Simulate Wave Impact on Composite Sandwich Marine Structures. In: Abrate, S., Castanié, B., Rajapakse, Y. (eds) Dynamic Failure of Composite and Sandwich Structures. Solid Mechanics and Its Applications, vol 192. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5329-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5329-7_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5328-0

  • Online ISBN: 978-94-007-5329-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics