Skip to main content

Discrete Modeling of the Crushing of Nomex Honeycomb Core and Application to Impact and Post-impact Behavior of Sandwich Structures

  • Chapter
  • First Online:
Dynamic Failure of Composite and Sandwich Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 192))

Abstract

In this chapter, an original method for modeling the behavior of sandwich structures during and after impact is proposed and validated. It is based on the demonstration that Nomex honeycomb behaves in a post-buckling mode very early and that compression forces are taken up by the corners or vertical edges of the honeycomb cells in the same way as they are in the stiffeners in aircraft structures. Thus it is possible to represent the honeycomb discretely by a grid of springs located at the six corners of hexagonal cells. This approach represents the phenomenon of indentation on honeycomb alone or on sandwiches very well. This approach provides an understanding of how the sandwich and the core behave under compression after impact. An original criterion based on a local core crush is tested and validated to compute the residual strength. To consider the bending response of sandwich structures, a multi-level approach is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guedra-Degeorges D, Thevenet P, Maison S (1997) Damage tolerance of sandwich structures. Proceedings of the Euromech 360 colloquium. Kluwer Academic Publisher, Saint Etienne

    Google Scholar 

  2. Bernard ML (1987) Impact resistance and damage tolerance of composite sandwich plates. TELAC report 87-11. S.M thesis, MIT

    Google Scholar 

  3. Bernard ML, Lagace PA (1989) Impact resistance of composite sandwich plates. J Reinf Plast Compos 8(9):432–445

    Article  Google Scholar 

  4. Llorente S, Weems D, Fay R (1990) Evaluation of advanced sandwich structure designed for improved durability and damage tolerance. In: American helicopter Society 46th annual forum proceedings, Washington, DC, pp 825–831

    Google Scholar 

  5. Caldwell MS, Borris PW, Falabella R (1990) Impact damage testing of bonded sandwich panels. In: 22nd international SAMPE technical conference, Boston, MA, USA, 6–8 Nov 1990

    Google Scholar 

  6. Sun CT, Wu CL (1991) Low velocity impact of composite sandwich panels. In: Proceedings of 32nd AIAA/ASME/ASCE/AHS/ASC structural, structural dynamic, materials conference, Baltimore, pp 1123–1129

    Google Scholar 

  7. Williamson JE (1991) Response mechanism in the impact of graphite/epoxy honeycomb sandwich panels. TELAC report 91-12, Technology for advanced composites, MIT

    Google Scholar 

  8. Williamson JE, Lagace PA (1994) Response mechanism in the impact of graphite/epoxy honeycomb sandwich panels. In: Proceedings of the 8th technical conference of the American Society for Composite, Cleveland, pp 287–297

    Google Scholar 

  9. Abrate S (1998) Impact on composite structures. Cambridge University Press, New York

    Book  Google Scholar 

  10. Goldsmith W, Sackman J-L (1992) Experimental study of energy absorption in impact on sandwich plates. Int J Impact Eng 12(2):241–262

    Article  Google Scholar 

  11. Jamjian M, Goldsmith W, Sackman JL (1994) Response of an infinite plate on a honeycomb foundation to a rigid cylindrical impactor. Int J Impact Eng 15(3):183–200

    Article  Google Scholar 

  12. Wierzbicki T (1983) Crushing analysis of metal honeycomb. Int J Impact Eng 1:157–174

    Article  Google Scholar 

  13. Ferri R, Sankar BV (1997) Static indentation and low velocity impact tests on sandwich plates. In: Proceedings of the 1997 ASME international mechanical engineering Congress and exposition, Dallas, vol 55, pp 485–490

    Google Scholar 

  14. Herup EJ, Palazotto AN (1997) Low-velocity impact damage initiation in graphite/epoxy/nomex honeycomb-sandwich plates. Compos Sci Technol 57:1581–1598

    Article  Google Scholar 

  15. Swanson RS, Jongman K (2003) Design of sandwich structures under contact loading. Compos Struct 59:403–413

    Article  Google Scholar 

  16. Soden P (1996) Indentation of composite sandwich beams. J Strain Anal 31(5):353–360

    Article  Google Scholar 

  17. Olsson R, McManus HL (1996) Improved theory for contact indentation of sandwich panels. AIAA J 34(6):1238–1244

    Article  MATH  Google Scholar 

  18. Besant T, Davies GAO, Hitchings D (2001) Finite element modelling of low velocity impact of composite sandwich panels. Compos Part A 32:1189–1196

    Article  Google Scholar 

  19. Horrigan DPW, Aitken RR, Moltschaniwskyj G (2000) Modelling of crushing due to impact on honeycomb sandwich. J Sandw Struct 2:131–151

    Article  Google Scholar 

  20. Palazotto AN, Herup EJ (2000) Finite elements analysis of low velocity impact on composite sandwich plates. Compos Struct 49:209–227

    Article  Google Scholar 

  21. Heimbs S (2009) Virtual testing of sandwich core structures using dynamic finite element simulations. Comput Mater Sci 45:205–216

    Article  Google Scholar 

  22. Giglio M, Manes A, Gilioli A Investigations on sandwich core properties through an experimental–numerical approach. Compos Part B. doi:10.1016/j.compositesb.2011.08.016

  23. Singace AA (1999) Axial crushing analysis of tubes deforming in the multilobe mode. Int J Mech Sci 41:865–890

    Article  MATH  Google Scholar 

  24. Wierzbicki T, Bhat T, Abramowicz W, Brodikin D (1992) A two fold elements model of progressive crushing of tubes. Int J Solid Struct 29(24):3269–3288

    Article  Google Scholar 

  25. Wu E, Jiang W-S (1999) Axial crush of metallic honeycomb. Int J Impact Eng 19(5–6):439–456

    Google Scholar 

  26. Gupta NK (1999) Some aspects of axial collapse of cylindrical thin-walled tubes. Int J Mech Sci 41:865–890

    Article  Google Scholar 

  27. Gupta NK, Husain A (2000) Mathematical modeling of axial crushing of cylindrical tubes. Thin-walled Struct 38:355–375

    Article  Google Scholar 

  28. Aminanda Y, Castanié B, Barrau JJ, Thevenet P (2005) Experimental analysis and modeling of the crushing of honeycomb cores. Appl Compos Mater 12(3-4):213–227

    Article  Google Scholar 

  29. Michael C, Yung N (1997) Airframe structural design. Conmilit Press, Hong Kong

    Google Scholar 

  30. Barrau JJ, Crézé S, Castanié B (2005) Buckling and post-buckling of beams with flat webs. Thin-Walled Struct 43(6):877–1002

    Article  Google Scholar 

  31. Wierzbicki T, Alvarez ADL, Hoo Fatt MS (1995) Impact energy absorption of sandwich plates with crushable core. In: Proceedings of the joint ASME applied mechanical materials summer meeting, Los Angeles, vol 205, pp 391–411

    Google Scholar 

  32. Petras A, Sutcliffe MPF (2000) Indentation failure analysis for sandwich beams. Compos Struct 50:311–318

    Article  Google Scholar 

  33. http://www.samtech.com/

  34. Aminanda Y, Castanié B, Barrau JJ, Thevenet P (2005) Modélisation de l’indentation des structures sandwichs à peaux métalliques. Mécanique et Industrie 6:487–98

    Article  Google Scholar 

  35. Yulfian Aminanda (2004) Contribution à l’analyse et à la modélisation de structures sandwichs impactées. PhD thesis, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace

    Google Scholar 

  36. Castanié B, Bouvet C, Aminanda Y, Barrau JJ, Thevenet P (2008) Modelling of low energy/low velocity impact on nomex honeycomb sandwich structures with metallic skins. Int J Impact Eng 35:620–634

    Article  Google Scholar 

  37. Choi IK, Lim CH (2004) Low-velocity impact analysis of composite laminates using linearized contact law. Compos Struct 66:125–32

    Article  Google Scholar 

  38. Aminanda Y, Castanié B, Barrau JJ, Thevenet P (2009) Experimental and numerical analysis of the compression-after-impact of metal-skinned sandwich structures. Compos Sci Technol 69:50–59

    Article  Google Scholar 

  39. Castanié B, Aminanda Y, Bouvet C, Barrau JJ (2008) Core crush criteria to determine the strength of sandwich composite structures subjected to compression after impact. Compos Struct 86:243–250

    Article  Google Scholar 

  40. Fualdes C (2006) Composite@airbus. Damage tolerance philosophy. In: FAA workshop for composite damage tolerance and maintenance, Chicago, 19–21 July 2006

    Google Scholar 

  41. Lawrance Cook (2012) Visual inspection reliability for composite aircraft structures. PhD thesis Cranfield University, UK

    Google Scholar 

  42. Shipsha A, Hallstrom S, Zenkert D (2003) Failure mechanisms and modelling of impact damage in sandwich beams – A 2D approach: part II – analysis and modelling. J Sandw Struct Mater 5:33–51

    Article  Google Scholar 

  43. Shipsha A, Zenkert D (2005) Compression-after-impact strength of sandwich panels with core crushing damage. Appl Compos Mater 12(3-4):149–164

    Article  Google Scholar 

  44. Minguet PJ (1997) A model for predicting behavior of impact-damaged minimum gage sandwich panels under compression. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 32nd structure, structural dynamics and material conference, St. Louis, pp 423–439

    Google Scholar 

  45. Thomson RS, Mouritz AP (1999) Skin wrinkling of impact damaged sandwich composite. J Sandw Struct Mater 1:299

    Article  Google Scholar 

  46. Xie Z, Vizzini AJ (2005) Damage propagation in a composite sandwich panel subjected to increasing uniaxial compression after low-velocity impact. J Sandw Struct Mater 7:269

    Article  Google Scholar 

  47. Xie Z, Vizzini AJ (2004) A feasible methodology for engineering applications in damage tolerance of composite sandwich structures. J Compos Mater 3(8):891

    Article  Google Scholar 

  48. Minakuchi S, Okabe Y, Takeda N (2008) “Segment-wise model” for theoretical simulation of barely visible indentation damage in composite sandwich beams: Part I – Formulation. Compos Part A 39(1):133–144

    Article  Google Scholar 

  49. Minakuchi S, Okabe Y, Takeda N (2007) “Segment-wise model” for theoretical simulation of barely visible indentation damage in composite sandwich beams: part II – experimental verification and discussion. Compos Part A 38(12):2443–2450

    Article  Google Scholar 

  50. Tomblin J, Lacy T, Smith B, Hooper S, Vizzini A, Lee S (1999) Review of damage tolerance for composite sandwich airframe structures. DOT/FAA/AR-99/49

    Google Scholar 

  51. Castanié B, Barrau JJ, Jaouen JP, Rivallant S (2004) Combined shear/compression structural testing of asymmetric sandwich structures. Exp Mech 44(5):461–472

    Google Scholar 

  52. Lacy TE, Hwang Y (2003) Numerical modeling of impact-damaged sandwich composites subjected to compression-after-impact loading. Compos Struct 61:115–128

    Article  Google Scholar 

  53. Thomas EL, Youngkeun Hwang (2007) Numerical estimates of the compressive strength of impact-damaged sandwich. J Compos Mater 41:367

    Google Scholar 

  54. Tomblin J, Raju KS, Acosta JF, Liew J, Smith JL (2002) Impact damage characterization and damage tolerance of composite sandwich airframe structures. DOT/FAA/AR-00/44

    Google Scholar 

  55. Baranger E, Cluzel C, Guidault P-A (2010) Modelling of the behaviour of aramid folded cores up to global crushing. Strain. doi:10.1111/j.1475-1305.2010.00753.x

  56. Tsang PW, Lagace PA (1994) Failure mechanism of impact-damaged sandwich panels under uniaxial compression. In: Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC structural, structural dynamics, materials conference, Hilton Head, vol 2, pp 745–754

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Castanié .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castanié, B., Aminanda, Y., Barrau, JJ., Thevenet, P. (2013). Discrete Modeling of the Crushing of Nomex Honeycomb Core and Application to Impact and Post-impact Behavior of Sandwich Structures. In: Abrate, S., Castanié, B., Rajapakse, Y. (eds) Dynamic Failure of Composite and Sandwich Structures. Solid Mechanics and Its Applications, vol 192. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5329-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5329-7_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5328-0

  • Online ISBN: 978-94-007-5329-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics