Skip to main content

Intermolecular Potentials of the Carbon Tetrachloride and Trifluoromethane Dimers Calculated with Density Functional Theory

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

  • 1928 Accesses

Abstract

We have calculated the interaction potentials of the carbon tetrachloride and trifluoromethane dimers for 12 and 14 conformers, respectively, using the density functional theory (DFT) with 80 density functionals chosen from the combinations of eight exchange and ten correlation functionals. While the performance of an exchange functional is related to the large reduced density gradient of the exchange enhancement factor, the correlation energy is determined by the low-density behavior of a correlation enhancement factor. Our calculations demonstrate that the correlation counterpart plays an equally important role as the exchange functional in determining the van der Waals interactions of the carbon tetrachloride and trifluoromethane dimers. These observations can be utilized to better understand the seemingly unsystematic DFT interaction potentials for weakly bound systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyagi OS, Bisht HS, Chatterjee AK (2004) J Phys Chem B 108:3010

    Article  CAS  Google Scholar 

  2. Hobza P, Zahradnik R (1988) Intermolecular complexes: The role of van der Waals systems in physical chemistry and in the biodisciplines. Elsevier, New York

    Google Scholar 

  3. Stone AJ (1996) The theory of intermolecular forces. Oxford University Press, Oxford

    Google Scholar 

  4. Margenau H (1939) Rev Mod Phys 11:1

    Article  CAS  Google Scholar 

  5. van der Avoird A, Wormer PES, Moszynski R (1994) Chem Rev, Washington, DC 94:1931

    Google Scholar 

  6. Rappe AK, Bernstein ER (2000) J Phys Chem A 104:6117

    Article  CAS  Google Scholar 

  7. Chalasinski G, Szczensniak MM (2000) Chem Rev, Washington, DC 100:4227

    Google Scholar 

  8. Wheatley RJ, Tulegenov AS, Bichoutskaia E (2004) Int Rev Phys Chem 23:151

    Article  CAS  Google Scholar 

  9. Zhao Y, Truhlar DG (2005) J Chem Theor Comput 1:415

    Article  CAS  Google Scholar 

  10. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  11. Friesner RA (2005) Proc Natl Acad Sci USA 102:6648

    Article  CAS  Google Scholar 

  12. Frenkel D, Smit B (2002) Understanding molecular simulations. Academic, New York

    Google Scholar 

  13. Marques M, Gross E (2004) Annu Rev Phys Chem 55:427

    Article  CAS  Google Scholar 

  14. Dykstra CE, Frenking G, Kim KS, Scuseria GE (2005) Theory and applications of computational chemistry: The first forty years. Elsevier, Amsterdam

    Google Scholar 

  15. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  16. Chung YH, Li AH-T, Chao SD (2011) J Comp Chem 32:2414–2421

    Article  CAS  Google Scholar 

  17. Li AHT, Huang SC, Chao SD (2010) J Chem Phys 132:024506

    Article  Google Scholar 

  18. Frisch MJ et al (2004) Gaussian03, revision D.02. Gaussian, Inc., Wallingford

    Google Scholar 

  19. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  20. Handy NC, Cohen A (2001) J Mol Phys 99:403

    Article  CAS  Google Scholar 

  21. Adamo C, Barone V (1998) J Chem Phys 108:664

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  23. Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: Recent progress and new directions. Plenum Publishing, New York

    Google Scholar 

  24. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  25. Kohn W, Sham L (1965) J Phys Rev 140:A1133

    Article  Google Scholar 

  26. Boese AD, Handy NC (2001) J Chem Phys 114:5497; see also the supporting material: EPAPS document no. E-JCPA6-114-301111

    Google Scholar 

  27. Slater JC (1974) Quantum theory of molecular and solids, vol 4, The Self-Consistent Field for Molecular and Solids. McGraw-Hill, New York

    Google Scholar 

  28. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  29. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  30. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Haase J, Zell W (1965) Z Phys Chem 45:202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CQSE (10R80914) of the National Taiwan University. We acknowledge the Industrial Technology Research Institute, Biomedical Technology and Device Research Labs, and National Center for High-Performance Computing (NCHC) for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvin Huang-Te Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Li, A.HT., Chao, S.D., Shau, YW. (2012). Intermolecular Potentials of the Carbon Tetrachloride and Trifluoromethane Dimers Calculated with Density Functional Theory. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_15

Download citation

Publish with us

Policies and ethics