Skip to main content

Potential Beneficial Effects of a Diet with Walnuts in Aging and Alzheimer’s Disease

  • Chapter
  • First Online:
Brain Aging and Therapeutic Interventions

Abstract

Alzheimer’s disease (AD) is a severe neurodegenerative disease that gradually results in loss of memory and impairment of cognitive functions in the elderly people. Amyloid beta (Ab) is the major protein of amyloid plaques in the brains of patients with AD. Ab is known to increase the production of free radicals, i.e. reactive oxygen species (ROS) in neuronal cells, leading to oxidative stress and cell death. Oxidative stress and inflammation are prominent features in the aging process and in AD, which may be causally related to neuronal dysfunction and its death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge ROS, thereby offering protection against oxidative stress. Walnuts are rich in components that have antioxidant and anti-inflammatory properties. Here, we review the evidence that walnut extract can inhibit the fibrillization of Ab, solubilise preformed fibrillar Ab and protects the cells against Ab-induced oxidative stress and cell death. Walnuts in the diet may offer protection against Ab-mediated cytotoxicity by (i) reducing the generation of free radicals, (ii) inhibiting membrane damage and (iii) attenuating DNA damage. This effect of walnut extract can be due to the active compounds present in walnuts, which may increase the capacity of endogenous antioxidant defenses and modulate the cellular redox state. A diet rich in walnuts may therefore reduce the risk of developing dementia of Alzheimer’s type by inhibiting Ab fibrillization, Ab-mediated cytotoxicity and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbey M, Noakes M, Belling GB, Nestel PJ (1994) Partial replacement of saturated fatty acids with almonds or walnuts lowers total plasma cholesterol and low-density-lipoprotein cholesterol. Am J Clin Nutr 59:995–999

    PubMed  CAS  Google Scholar 

  • Akama KT, Van Eldik LJ (2000) Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. J Biol Chem 275:7918–7924

    Article  PubMed  CAS  Google Scholar 

  • Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L (2009) Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol 41:1989–2004

    Article  PubMed  CAS  Google Scholar 

  • Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM (2001) Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J Nutr 131:2837–2842

    PubMed  CAS  Google Scholar 

  • Annunziato L, Pannaccione A, Cataldi M, Secondo A, Castaldo P, Di Renzo G, Taglialatela M (2002) Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging 23:819–834

    Article  PubMed  CAS  Google Scholar 

  • Apelt J, Bigl M, Wunderlich P, Schliebs R (2004) Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. Int J Dev Neurosci 22:475–484

    Article  PubMed  CAS  Google Scholar 

  • Arlt S, Beisiegel U, Kontush A (2002) Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Curr Opin Lipidol 13:289–294

    Article  PubMed  CAS  Google Scholar 

  • Baek BS, Kim JW, Lee JH, Kwon HJ, Kim ND, Kang HS, Yoo MA, Yu BP, Chung HY (2001) Age-related increase of brain cyclooxygenase activity and dietary modulation of oxidative status. J Gerontol A Biol Sci Med Sci 56:B426–B431

    Article  PubMed  CAS  Google Scholar 

  • Bandopadhyay U, Dipak D, Banerjee RK (1999) Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci 77:658–666

    Google Scholar 

  • Banel DK, Hu FB (2009) Effects of walnut consumption on blood lipids and other cardiovascular risk factors: a meta-analysis and systematic review. Am J Clin Nutr 90:56–63

    Article  PubMed  CAS  Google Scholar 

  • Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, Smith MA (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59:290–294

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    Article  PubMed  CAS  Google Scholar 

  • Chang HN, Wang SR, Chiang SC, Teng WJ, Chen ML, Tsai JJ, Huang DF, Lin HY, Tsai YY (1996) The relationship of aging to endotoxin shock and to production of TNF-alpha. J Gerontol A Biol Sci Med Sci 51:M220–M222

    Article  PubMed  CAS  Google Scholar 

  • Chauhan N, Wang KC, Wegiel J, Malik MN (2004) Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Curr Alzheimer Res 1:183–188

    Article  PubMed  CAS  Google Scholar 

  • Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13:195–208

    Article  PubMed  CAS  Google Scholar 

  • Chen CM (2011) Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease. Chang Gung Med J 34:135–152

    PubMed  Google Scholar 

  • Chen S, Frederickson RC, Brunden KR (1996) Neuroglial-mediated immunoinflammatory responses in Alzheimer’s disease: complement activation and therapeutic approaches. Neurobiol Aging 17:781–787

    Article  PubMed  CAS  Google Scholar 

  • Combs CK, Karlo JC, Kao SC, Landreth GE (2001) Beta-amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21:1179–1188

    PubMed  CAS  Google Scholar 

  • Crews C, Hough P, Godward J, Brereton P, Lees M, Guiet S, Winkelmann W (2005) Study of the main constituents of some authentic walnut oils. J Agric Food Chem 53:4853–4860

    Article  PubMed  CAS  Google Scholar 

  • Darvesh AS, Carroll RT, Bishayee A, Geldenhuys WJ, Van der Schyf CJ (2010) Oxidative stress and Alzheimer’s disease: dietary polyphenols as potential therapeutic agents. Expert Rev Neurother 10:729–745

    Article  PubMed  CAS  Google Scholar 

  • Davis JB (1996) Oxidative mechanisms in beta-amyloid cytotoxicity. Neurodegeneration 5:441–444

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T, Ito H, Yoshida T (2003) Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 63:795–801

    Article  PubMed  CAS  Google Scholar 

  • Gabbita SP, Lovell MA, Markesbery WR (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem 71:2034–2040

    Article  PubMed  CAS  Google Scholar 

  • Galasko D, Montine TJ (2010) Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med 4:27–36

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Huang HM (2002) Oxidative processes in the brain and non-neuronal tissues as biomarkers of Alzheimer’s disease. Front Biosci 7:d1007-d1015

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG (1983) Alzheimer’s disease. The commonest form of amyloidosis. Arch Pathol Lab Med 107:281–282

    CAS  Google Scholar 

  • Gutierrez-Merino C, Lopez-Sanchez C, Lagoa R, Samhan-Arias AK, Bueno C, Garcia-Martinez V (2011) Neuroprotective actions of flavonoids. Curr Med Chem 18:1195–1212

    Article  PubMed  CAS  Google Scholar 

  • Halvorsen BL, Carlsen MH, Phillips KM, Bohn SK, Holte K, Jacobs DR, Jr, Blomhoff R (2006) Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr 84:95–135

    PubMed  CAS  Google Scholar 

  • Hardman WE, Ion G (2008) Suppression of implanted MDA-MB 231 human breast cancer growth in nude mice by dietary walnut. Nutr Cancer 60:666–674

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Harris ME, Hensley K, Butterfield DA, Leedle RA, Carney JM (1995) Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1–40) in cultured hippocampal neurons. Exp Neurol 131:193–202

    Article  PubMed  CAS  Google Scholar 

  • He Y, Cui J, Lee JC, Ding S, Chalimoniuk M, Simonyi A, Sun AY, Gu Z, Weisman GA, Wood WG, Sun GY (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro 3:e00050

    Google Scholar 

  • Heinrichs SC (2010) Dietary omega-3 fatty acid supplementation for optimizing neuronal structure and function. Mol Nutr Food Res 54:447–456

    Article  PubMed  CAS  Google Scholar 

  • Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91

    Article  PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1991) Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer’s disease. J Mol Biol 218:149–163

    Article  PubMed  CAS  Google Scholar 

  • Ho L, Pieroni C, Winger D, Purohit DP, Aisen PS, Pasinetti GM (1999) Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. J Neurosci Res 57:295–303

    Article  PubMed  CAS  Google Scholar 

  • Hoozemans JJ, Bruckner MK, Rozemuller AJ, Veerhuis R, Eikelenboom P, Arendt T (2002) Cyclin D1 and cyclin E are co-localized with cyclo-oxygenase 2 (COX-2) in pyramidal neurons in Alzheimer disease temporal cortex. J Neuropathol Exp Neurol 61:678–688

    PubMed  CAS  Google Scholar 

  • Hu FB, Stampfer MJ, Manson JE, Rimm EB, Colditz GA, Rosner BA, Speizer FE, Hennekens CH, Willett WC (1998) Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. BMJ 317:1341–1345

    Article  PubMed  CAS  Google Scholar 

  • Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, An Y, West MJ, Crain B, Troncoso JC (2008) Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67:578–589

    Article  PubMed  Google Scholar 

  • Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137:855–859

    PubMed  CAS  Google Scholar 

  • Iqbal K, Alonso AC, Gong CX, Khatoon S, Pei JJ, Wang JZ, Grundke-Iqbal I (1998) Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Transm Suppl 53:169–180

    Article  PubMed  CAS  Google Scholar 

  • Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol 181:7254–7262

    PubMed  CAS  Google Scholar 

  • Jiang R, Manson JE, Stampfer MJ, Liu S, Willett WC, Hu FB (2002) Nut and peanut butter consumption and risk of type 2 diabetes in women. JAMA 288:2554–2560

    Article  PubMed  Google Scholar 

  • Jurd L (1958) Plant polyphenols: the polyphenolic constituents of the walnut (Juglans regia). J Am Chem Soc 80:2249–2252

    Article  CAS  Google Scholar 

  • Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, Masutani H, Yodoi J, Urano Y, Nagano T, Ichijo H (2005) Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 12:19–24

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, Markesbery WR (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian ZS (1994) Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci 747:1–11

    Article  PubMed  CAS  Google Scholar 

  • Knopman DS, Parisi JE, Salciati A, Floriach-Robert M, Boeve BF, Ivnik RJ, Smith GE, Dickson DW, Johnson KA, Petersen L E, McDonald WC, Braak H, Petersen RC (2003) Neuropathology of cognitively normal elderly. Exp Neurol 62:1087–1095

    CAS  Google Scholar 

  • Kordula T, Bugno M, Rydel RE, Travis J (2000) Mechanism of interleukin-1- and tumor necrosis factor alpha-dependent regulation of the alpha 1-antichymotrypsin gene in human astrocytes. J Neurosci 20:7510–7516

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Kushner I (2001) C-reactive protein elevation can be caused by conditions other than inflammation and may reflect biologic aging. Cleve Clin J Med 68:535–537

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW (1987) ‘Increased calcium-current’ hypothesis of brain aging. Neurobiol Aging 8:346–347

    Article  PubMed  CAS  Google Scholar 

  • Lavedrine F, Ravel A, Poupard A, Alary J (1997) Effect of geographic origin, variety and storage on tocopherol concentrations in walnuts by HPLC. Food Chem 58:135–140

    Article  CAS  Google Scholar 

  • Lavedrine F, Zmirou D, Ravel A, Balducci F, Alary J (1999) Blood cholesterol and walnut consumption: a cross-sectional survey in France. Prev Med 28:333–339

    Article  PubMed  CAS  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45:1594–1601

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Gabbita SP, Markesbery WR (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem 72:771–776

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM Jr, Brachova L, Yan SD, Walker DG, Shen Y, Rogers J (2001a) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35:72–79

    Article  CAS  Google Scholar 

  • Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, Stern DM, Yan SD (2001b) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp Neurol 171:29–45

    Article  CAS  Google Scholar 

  • Luterman JD, Haroutunian V, Yemul S, Ho L, Purohit D, Aisen PS, Mohs R, Pasinetti GM (2000) Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch Neurol 57:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B (1997) An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J Neurochem 68:2061–2069

    Article  PubMed  CAS  Google Scholar 

  • Majid S, Khanduja KL, Gandhi RK, Kapur S, Sharma RR (1991) Influence of ellagic acid on antioxidant defense system and lipid peroxidation in mice. Biochem Pharmacol 42:1441–1445

    Article  PubMed  CAS  Google Scholar 

  • Mao P, Reddy PH (2011) Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim Biophys Acta 1812:1359–1370

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21:195–218

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 107:341–346

    Article  PubMed  CAS  Google Scholar 

  • McKay DL, Chen CY, Yeum KJ, Matthan NR, Lichtenstein AH, Blumberg JB (2010) Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: a randomized, cross-over pilot study. Nutr J 9:21

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:5755–5791

    Article  Google Scholar 

  • Mishra N, Dubey A, Mishra R, Barik N (2010) Study on antioxidant activity of common dry fruits. Food Chem Toxicol 48:3316–3320

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Mishra M, Seth P, Sharma SK (2011) Tetrahydrocurcumin confers protection against amyloid beta-induced toxicity. Neuroreport 22:23–27

    Article  PubMed  CAS  Google Scholar 

  • Monji A, Utsumi H, Ueda T, Imoto T, Yoshida I, Hashioka S, Tashiro K, Tashiro N (2001) The relationship between the aggregational state of the amyloid-beta peptides and free radical generation by the peptides. J Neurochem 77:1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Montine TJ, Sidell KR, Crews BC, Markesbery WR, Marnett LJ, Roberts LJ, Morrow JD (1999) Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 53:1495–1498

    Article  PubMed  CAS  Google Scholar 

  • Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33:620–626

    Article  PubMed  CAS  Google Scholar 

  • Morley JE (2010) Nutrition and the brain. Clin Geriatr Med 26:89–98

    Article  PubMed  Google Scholar 

  • Muthaiyah B, Essa MM, Chauhan V, Chauhan A (2011) Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 36:2096–2103

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A, Bandez MJ, Sanchez-Pino MJ, Gomez C, Muntane G, Ferrer I (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46:1574–1580

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Tamaoki T, Tanaka K, Motohashi N, Nakamura M, Hayashi T, Yamaguchi H, Shimohama S, Lee HG, Zhu X, Smith MA, Perry G (2010) Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer disease. Neurobiol Dis 37:731–737

    Article  PubMed  CAS  Google Scholar 

  • Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L, Pereira JA (2008) Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem Toxicol 46:2326–2331

    Article  PubMed  CAS  Google Scholar 

  • Pappolla MA, Chyan YJ, Poeggeler B, Frangione B, Wilson G, Ghiso J, Reiter RJ (2000) An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm 107:203–231

    Article  PubMed  CAS  Google Scholar 

  • Parachikova A, Agadjanyan MG, Cribbs DH, Blurton-Jones M, Perreau V, Rogers J, Beach TG, Cotman CW (2007) Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol Aging 28:1821–1833

    Article  PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2011) Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin. Neurochem Int 58:447–457

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Kim HS, Cho EK, Kwon BY, Phark S, Hwang KW, Sul D (2008) Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol 46:2881–2887

    Article  PubMed  CAS  Google Scholar 

  • Pasinetti GM, Aisen PS (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87:319–324

    Article  PubMed  CAS  Google Scholar 

  • Pereira JA, Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L (2008) Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem Toxicol 46:2103–2111

    Article  PubMed  CAS  Google Scholar 

  • Pereira JA, Oliveira I, Sousa A, Valentao P, Andrade PB, Ferreira IC, Ferreres F, Bento A, Seabra R, Estevinho L (2007) Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem Toxicol 45:2287–2295

    Article  PubMed  CAS  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Pribis P, Bailey RN, Russell AA, Kilsby MA, Hernandez M, Craig WJ, Grajales T, Shavlik DJ, Sabate J (2011) Effects of walnut consumption on cognitive performance in young adults. Br J Nutr 107:1393–1401

    Article  CAS  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    Article  PubMed  CAS  Google Scholar 

  • Rajaram S, Haddad EH, Mejia A, Sabate J (2009) Walnuts and fatty fish influence different serum lipid fractions in normal to mildly hyperlipidemic individuals: a randomized controlled study. Am J Clin Nutr 89:1657S–1663S

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Manchester LC, Tan DX (2005) Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 21:920–924

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Schultz J, Brachova L, Lue LF, Webster S, Bradt B, Cooper NR, Moss DE (1992) Complement activation and beta-amyloid-mediated neurotoxicity in Alzheimer’s disease. Res Immunol 143:624–630

    Article  PubMed  CAS  Google Scholar 

  • Rozemuller AJ, van Gool WA, Eikelenboom P (2005) The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer’s disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4:223–233

    Article  PubMed  CAS  Google Scholar 

  • Rozovsky I, Finch CE, Morgan TE (1998) Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging 19:97–103

    Article  PubMed  CAS  Google Scholar 

  • Sabate J, Fraser GE, Burke K, Knutsen SF, Bennett H, Lindsted KD (1993) Effects of walnuts on serum lipid levels and blood pressure in normal men. N Engl J Med 328:603–607

    Article  PubMed  CAS  Google Scholar 

  • Schwab C, McGeer PL (2008) Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 13:359–369

    PubMed  CAS  Google Scholar 

  • Sheng JG, Mrak RE, Griffin WS (1998) Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol 95:229–234

    Article  PubMed  CAS  Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A 88:10540–10543

    Article  PubMed  CAS  Google Scholar 

  • Soto C, Branes MC, Alvarez J, Inestrosa NC (1994) Structural determinants of the Alzheimer’s amyloid beta-peptide. J Neurochem 63:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Spaulding CC, Walford RL, Effros RB (1997) Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B10RF1 mice. Mech Aging Dev 93:87–94

    Article  PubMed  CAS  Google Scholar 

  • Sponne I, Fifre A, Drouet B, Klein C, Koziel V, Pincon-Raymond M, Olivier JL, Chambaz J, Pillot T (2003) Apoptotic neuronal cell death induced by the non-fibrillar amyloid-beta peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J Biol Chem 278:3437–3445

    Article  PubMed  CAS  Google Scholar 

  • Stampar F, Solar A, Hudina M, Veberic R, Colaric M (2006) Traditional walnut liqueur-cocktail of phenolics. Food Chemistry 95:627–631

    Article  CAS  Google Scholar 

  • Steele M, Stuchbury G, Munch G (2007) The molecular basis of the prevention of Alzheimer’s disease through healthy nutrition. Exp Gerontol 42:28–36

    Article  PubMed  CAS  Google Scholar 

  • Tarkowski E, Liljeroth AM, Minthon L, Tarkowski A, Wallin A, Blennow K (2003) Cerebral pattern of pro- and anti-inflammatory cytokines in dementias. Brain Res Bull 61:255–260

    Article  PubMed  CAS  Google Scholar 

  • Torabian S, Haddad E, Rajaram S, Banta J, Sabate J (2009) Acute effect of nut consumption on plasma total polyphenols, antioxidant capacity and lipid peroxidation. J Hum Nutr Diet 22:64–71

    Article  PubMed  CAS  Google Scholar 

  • Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE (2006) Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol 79:596–610

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X (2009) The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 109:153–159

    Article  PubMed  CAS  Google Scholar 

  • Waring P (2005) Redox active calcium ion channels and cell death. Arch Biochem Biophys 434:33–42

    Article  PubMed  CAS  Google Scholar 

  • Webster S, Lue LF, Brachova L, Tenner AJ, McGeer PL, Terai K, Walker DG, Bradt B, Cooper NR, Rogers J (1997) Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging 18:415–421

    Article  PubMed  CAS  Google Scholar 

  • Willis LM, Shukitt-Hale B, Cheng V, Joseph JA (2009) Dose-dependent effects of walnuts on motor and cognitive function in aged rats. Br J Nutr 101:1140–1144

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    PubMed  CAS  Google Scholar 

  • Xin W, Wei T, Chen C, Ni Y, Zhao B, Hou J (2000) Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents. Toxicology 148:103–110

    Article  PubMed  CAS  Google Scholar 

  • Zambon D, Sabate J, Munoz S, Campero B, Casals E, Merlos M, Laguna JC, Ros E (2000) Substituting walnuts for monounsaturated fat improves the serum lipid profile of hypercholesterolemic men and women. A randomized crossover trial. Ann Intern Med 132:538–546

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funds from the New York State Office of People with Developmental Disabilities, and California Walnut Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chauhan, A., Chauhan, V. (2012). Potential Beneficial Effects of a Diet with Walnuts in Aging and Alzheimer’s Disease. In: Thakur, M., Rattan, S. (eds) Brain Aging and Therapeutic Interventions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5237-5_16

Download citation

Publish with us

Policies and ethics