Skip to main content

Evolving Self-reference: Matter, Symbols, and Semantic Closure

  • Chapter
  • First Online:
LAWS, LANGUAGE and LIFE

Part of the book series: Biosemiotics ((BSEM,volume 7))

Abstract

A theory of emergent or open-ended evolution that is consistent with the epistemological foundations of physical theory and the logic of self-reference requires complementary descriptions of the material and symbolic aspects of events. The matter-symbol complementarity is explained in terms of the logic of self-replication, and physical distinction of laws and initial conditions. Physical laws and natural selection are complementary models of events. Physical laws describe those invariant events over which organisms have no control. Evolution by natural selection is a theory of how organisms increase their control over events. A necessary semantic closure relation is defined relating the material and symbolic aspects of organisms capable of open-ended evolution.

Reprinted from Communication and Cognition—Artificial Intelligence, 12(1–2), 9–28, 1995.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 309.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bedian, V. (1982). The possible role of assignment catalysts in the origin of the genetic code. Origins of Life, 12, 181.

    Article  PubMed  CAS  Google Scholar 

  • Born, M. (1965). Symbol and reality. Universitas, 7, 337–353. Reprinted in Born, M. Physics in my generation (pp. 132–146). New York: Springer-Verlag.

    Google Scholar 

  • Burgers, J. M. (1963). On the emergence of patterns of order. Bulletin of the American Mathematical Society, 69, 1–25.

    Article  Google Scholar 

  • Cassirer, E. (1957). The philosophy of symbolic forms (The phenomena of knowledge, Vol. 3). New Haven: Yale University Press.

    Google Scholar 

  • Churchland, P. M. (1981). Eliminative materialism and the propositional attitudes. Journal of Philosophy, 78(2), 67–90.

    Article  Google Scholar 

  • Conrad, M. (1990). The geometry of evolution. BioSystems, 24, 61–81.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F. (1993). The astonishing hypothesis. New York: Scribner’s Sons.

    Google Scholar 

  • Dietrich, E. (Ed.). (1994). Thinking computers and virtual persons. New York: Academic.

    Google Scholar 

  • Glansdorff, P., & Prigogine, I. (1971). Thermodynamics of structure, stability, and fluctuations. London: Wiley.

    Google Scholar 

  • Haken, H. (1977). Synergetics. Berlin: Springer.

    Book  Google Scholar 

  • Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346.

    Article  Google Scholar 

  • Hertz, H. (1894). The principles of mechanics (pp. 1–2). New York: Dover [orig. German ed., Prinzipien Mechanik, 1894] Quoted in Weyl, H. (1942). Philosophy of mathematics and natural science (p. 162). Princeton: Princeton University Press.

    Google Scholar 

  • Hopfield, J. J. (1994). Physics, computing, and why biology looks so different. Journal of Theoretical Biology, 171, 53–60.

    Article  Google Scholar 

  • Houtappel, R. M. F., Van Dam, H., & Wigner, E. P. (1965). The conceptual basis and use of the geometric invariance principles. Reviews of Modern Physics, 37, 595–632.

    Article  Google Scholar 

  • Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly connected nets. Journal of Theoretical Biology, 22, 437.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, S. A. (1993). The origins of order. New York: Oxford University Press.

    Google Scholar 

  • Langton, C. (1988). Artificial life. Redwood City: Addison-Wesley.

    Google Scholar 

  • Leff, H. S., & Rex, A. F. (Eds.). (1990). Maxwell’s demon, entropy, information, computing. Princeton: Princeton University Press.

    Google Scholar 

  • Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–183.

    Article  Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: Wiley.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1989). Exploring complexity. New York: Freeman.

    Google Scholar 

  • Pattee, H. H. (1969). How does a molecule become a message? Developmental Biology Supplement, 3, 1–16.

    Google Scholar 

  • Pattee, H. H. (1972). Laws, constraints, symbols, and languages. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol. 4, pp. 248–258). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Pattee, H. H. (1982). Cell psychology: An evolutionary approach to the symbol-matter problem. Cognition and Brain Theory, 5(4), 325–341.

    Google Scholar 

  • Pattee, H. H. (1988). Simulations, realizations, and theories of life. In C. Langton (Ed.), Artificial life (pp. 63–77). Redwood City: Addison-Wesley.

    Google Scholar 

  • Pattee, H. H. (1990). Response to E. Dietrich’s “Computationalism”. Social Epistemology, 4(2), 176–181.

    Google Scholar 

  • Post, E. (1965). Quoted from M. Davis (Ed.), The undecidable. Hewlett: Rowen Press.

    Google Scholar 

  • Pylyshyn, Z. (1984). Cognition and computation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rosen, R. (1977). Complexity and system description. In W. E. Harnett (Ed.), Systems, approaches, theories. Boston: Reidel.

    Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.

    Google Scholar 

  • Sober, E. (1984). The nature of selection. Cambridge, MA: MIT Press.

    Google Scholar 

  • Stein, D. L. (Ed.). (1988). Lectures in the sciences of complexity. Redwood City: Addison-Wesley.

    Google Scholar 

  • Stein, D. L., & Nadel, L. (Eds.). (1990). Lectures in complex systems. Redwood City: Addison-Wesley.

    Google Scholar 

  • Toffoli, T. (1982). Physics and computation. International Journal of Theoretical Physics, 21, 165–175.

    Article  Google Scholar 

  • von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton: Princeton University Press. Chapter VI.

    Google Scholar 

  • von Neumann, J. (1966). In A. Burks (Ed.), The theory of self-reproducing automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Waldrop, M. M. (1992). Complexity. New York: Simon & Schuster.

    Google Scholar 

  • Weber, B. H., Depew, D. J., & Smith, J. D. (1988). Entropy, information, and evolution. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In W. H. Zurek (Ed.), Complexity, entropy, and the physics of information. Redwood City: Addison-Wesley.

    Google Scholar 

  • Wheeler, J., & Zurek, W. (1983). Quantum theory and measurement. Princeton: Princeton Univ. Press.

    Google Scholar 

  • Whitehead, A. N. (1927). Symbolism: Its meaning and effect. New York: Macmillan.

    Google Scholar 

  • Wigner, E. P. (1964). Events, laws, and invariance principles. Science, 145, 995–999.

    Article  PubMed  CAS  Google Scholar 

  • Yates, F. E. (1987). Self-organizing systems: The emergence of order. New York: Plenum.

    Google Scholar 

  • Yovits, M. C., & Cameron, S. (Eds.). (1960). Self organizing systems. New York: Pergamon.

    Google Scholar 

  • Yovits, M. C., Jacobi, G. T., & Goldstein, G. D. (Eds.). (1962). Self organizing systems, 1962. Washington, DC: Spartan.

    Google Scholar 

  • Zurek, W. H. (Ed.). (1990). Complexity, entropy, and the physics of information. Redwood City: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pattee, H.H. (2012). Evolving Self-reference: Matter, Symbols, and Semantic Closure. In: LAWS, LANGUAGE and LIFE. Biosemiotics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5161-3_14

Download citation

Publish with us

Policies and ethics