Skip to main content

Introduction—What These Papers Are About

  • Chapter
  • First Online:
LAWS, LANGUAGE and LIFE

Part of the book series: Biosemiotics ((BSEM,volume 7))

  • 1432 Accesses

Abstract

Men ought to know that from nothing else but the brain come joys, delights, laughter and sports, and sorrows, griefs, despondency, and lamentations. And by this, in an especial manner, we acquire wisdom and knowledge, and see and hear, and know what are foul and what are fair, what are bad and what are good, what are sweet, and what unsavory; some we discriminate by habit, and some we perceive by their utility. Hippocrates (∼400 BC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 309.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allemann, R. K., Nigel, S., & Scrutton, N. S. (Eds.). (2009). Quantum tunneling in enzyme-catalyzed reactions. Cambridge: Royal Society of Chemistry (RSC).

    Google Scholar 

  • Bell, J. (1990). Against “measurement.”. Physics World, 3, 33–40.

    Google Scholar 

  • Bohr, N. (1958). Atomic physics and human knowledge (p. 20). New York: Wiley.

    Google Scholar 

  • Born, M. (1969). Symbol and reality. In Physics in my generation (pp. 132–146). New York: Springer.

    Chapter  Google Scholar 

  • Conrad, M. (1994). Amplification of superpositional effects through electronic-conformational interactions. Chaos, Solitons & Fractals, 4, 423–438.

    Article  CAS  Google Scholar 

  • Dehaene, S., & Brannon, E. (Eds.). (2011). Space, time and number in the brain: Searching for the foundations of mathematical thought. Oxford: Elsevier.

    Google Scholar 

  • Delbrück, M. (1949). A physicist looks at biology. Transactions of the Connecticut Academy of Arts and Sciences, 38, 173.

    Google Scholar 

  • Eddington, A. S. (1929). The nature of the physical world. Cambridge: The University Press.

    Google Scholar 

  • Edelman, G. M. (2006). Second nature: Brain science and human knowledge. New Haven/London: Yale University Press.

    Google Scholar 

  • Fröhlich, H. (1975). The extraordinary dielectric properties of biological materials and the action of enzymes. Proceedings of the National Academy of Sciences, 72, 4211–4215.

    Article  Google Scholar 

  • Gell-Mann, M. (1994). The quark and the jaguar. New York: W. H. Freeman.

    Google Scholar 

  • Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P. J., Tüxen, J., Mayor, M., & Arndt, M. (2011). Quantum interference of large organic molecules. Nature Communications, 2, 263. doi:10.1038/ncomms1263.

    Article  PubMed  Google Scholar 

  • Greenberg, J. (1978). Universals of human language. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Gross, P. L. K. (1927). The stackability of tetrakaidecahedra. Science, 66, 131–132.

    Article  PubMed  CAS  Google Scholar 

  • Hadamard, J. (1954). The psychology of invention in the mathematical field. New York: Dover.

    Google Scholar 

  • Hameroff, S. R., & Penrose, R. (1996). Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation, 40(3–4), 453–480.

    Article  Google Scholar 

  • Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346.

    Article  Google Scholar 

  • Harris, Z. (1991). A theory of language and information: A mathematical approach. Oxford: Clarendon.

    Google Scholar 

  • Hertz, H. (1956). The principles of mechanics (pp.1–2) New York: Dover. Original German ed. Prinzipien Mechanik, 1894.

    Google Scholar 

  • Hockett, C. (1960). The origin of speech. In Scientific American, 203, 89–97.

    CAS  Google Scholar 

  • Kauffman, S. A. (1993). The origins of order. Oxford: The University Press.

    Google Scholar 

  • Kauffman, S. (2008). Reinventing the sacred. New York: Basic Books.

    Google Scholar 

  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from. New York: Basic Books.

    Google Scholar 

  • London, F. (1961). Superfluids (2nd ed., Vol. I, p. 8). New York: Dover.

    Google Scholar 

  • McCulloch, W. S. (1988). Embodiments of mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

    Article  Google Scholar 

  • Monod, J. (1971). Chance and necessity. New York: Knopf.

    Google Scholar 

  • Nairz, O., Arndt, M., & Zeilinger, A. (2003). Quantum interference experiments with large molecules. American Journal of Physics, 71(4), 319–325.

    Article  CAS  Google Scholar 

  • Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–183.

    Article  Google Scholar 

  • Ollivier, H., Poulin, D., & Zurek, W. H. (2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 [4 pages].

    Article  PubMed  Google Scholar 

  • Pattee, H. H. (1961). On the origin of macromolecular sequences. Biophysical Journal, 1, 683–710. The paper is available from the NIH Archives at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366362/?tool=pubmed

  • Pattee. H. H. (1971). Can life explain quantum mechanics? In T. Bastin (ed.) Quantum theory and beyond (pp. 307–319). Cambridge : Cambridge University Press http://binghamton.academia.edu/HowardPattee/Papers/1188403/Can_life_explain_quantum_mechanics

  • Polanyi, M. (1968). Life’s irreducible structure. Science, 160, 1308.

    Article  PubMed  CAS  Google Scholar 

  • Pólya, G. (1968). Mathematics and plausible reasoning: Volume II patterns of plausible inference. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Prashant, & Chakrabarty, I. (2007). Non existence of quantum mechanical self replicating machine. arXiv:quant-ph/0510221v6

  • Schlosshauer, M. (2006). Experimental motivation and empirical consistency in minimal no-collapse quantum mechanics. Annals of Physics, 321, 112–149.

    Article  CAS  Google Scholar 

  • Schmidt, F. O. (1961). Quoted in “concluding remarks,”. In A. Sovijärvi & P. Aalto (Eds.), Proceedings of the 4th international congress of phonetic sciences (p. xxviii). The Hague: Mouton & Co.

    Google Scholar 

  • Sereno, M. I. (1991). Four analogies between biological and cultural/linguistic evolution. Journal of Theoretical Biology, 151, 467–507.

    Article  PubMed  CAS  Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity: Hierarchic systems. Proceedings of the American Philosophical Society, 467–482. (Reprinted in The Sciences of the Artificial, 3rd ed., 1996, Cambridge: MIT Press).

    Google Scholar 

  • Stent, G. (1966). Phage and the origin of molecular biology (p. 4). Plainview: Cold Springs Harbor Laboratory on Quantitative Biology.

    Google Scholar 

  • Vedral, V. (2011). Living in a quantum world. Scientific American, 304(6), 38–43.

    Article  PubMed  Google Scholar 

  • von Neumann, J. (1955). Mathematical foundations of quantum mechanics (pp. 418–421). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • von Neumann, J. (1966). In A. W. Burks (Ed.), Theory of self-reproducing automata (Lec. 5). Urbana: University of Illinois Press.

    Google Scholar 

  • Weyl, H. (1949). Philosophy of mathematics and natural science (pp. 110–124). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wheeler, J. A. & Zurek, W. H. (Eds.). (1983). Quantum theory and measurement. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wigner, E. P. (1960). The unreasonable effectiveness of mathematics in the natural sciences. In Communications in pure and applied mathematics, vol. 13, No. I. New York: Wiley.

    Google Scholar 

  • Wigner, E. P. (1967). The probability of the existence of a self-reproducing unit. In Symmetries and reflections. Scientific essays. Bloomington: Indiana University Press.

    Google Scholar 

  • Wigner, E. P. (1982). The limitations of the validity of present-day physics. In Mind in nature. Nobel conference XVII. San Francisco, CA: Harper & Row, p. 119.

    Google Scholar 

  • Wootters, W., & Zurek, W. (1982). A single quantum cannot be cloned. Nature, 299, 802–803.

    Article  CAS  Google Scholar 

  • Zurek, W. H. (1991). Decoherence and the transition form quantum to classical. Physics Today, 1991, 36–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pattee, H.H. (2012). Introduction—What These Papers Are About. In: LAWS, LANGUAGE and LIFE. Biosemiotics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5161-3_1

Download citation

Publish with us

Policies and ethics