Skip to main content

Abstract

Oily wastewaters are usually treated by physical, chemical and biological methods. Most conventional methods (coagulation, sedimentation, centrifugation and filtration) are not efficient in treating stable oil-in-water (O/W) emulsions, especially when the oil droplets are finely dispersed and the concentration is very low. These techniques can reduce oil concentrations by no more than 1% by volume of the total wastewater and cannot efficiently remove oil droplets below 10 μm. Hence, further treatment is needed to meet effluent standards. Membrane processes have found an increasing number of applications in the treatment of complex oily wastewater. However, sometimes it is not desirable or even possible to use a membrane system to carry out the entire separation because of the effluent nature that may cause severe fouling of the membrane. In those situations a pretreatment of the effluent by conventional methods may be suitable for a better process performance. These membrane-based hybrid processes combine a conventional process (mechanical, chemical or thermal) with a membrane separation. In this review lecture the design parameters and performance of conventional processes for the treatment of oily wastewater are summarized and several membrane hybrid processes and chosen examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi M, Sebzari MR, Mohammadi T (2011) Enhancement of oily wastewater treatment by ceramic microfiltration membranes using powder activated carbon. Chem Eng Technol 34:1252–1258

    Article  CAS  Google Scholar 

  2. Abdessemed D, Nezzal G, Ben Aim R (2000) Coagulation–adsorption–ultrafiltration for wastewater treatment and reuse. Desalination 131:307–314

    Article  CAS  Google Scholar 

  3. Abdullah MA, Rahmah AU, Man Z (2010) Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J Hazard Mater 177:683–691

    Article  CAS  Google Scholar 

  4. ACS Industries (2006) Liquid-liquid coalescer design manual. ACS Industries LP, Separations Technology Division, Houston

    Google Scholar 

  5. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 10(3):159–170

    Article  CAS  Google Scholar 

  6. Ahmad AL, Sumathi S, Hameed BH (2005) Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite, and activated carbon: a comparative study. Chem Eng J 108:179–185

    Article  CAS  Google Scholar 

  7. Al-Zoubi H, Al-Thyabat S, Al-Khatib L (2009) A hybrid flotation-membrane process for wastewater treatment: an overview. Desalin Water Treat 7:60–70

    Article  CAS  Google Scholar 

  8. Andrade VT, Andrade BG, Costa BRS, Pereira OA Jr, Dezotti M (2010) Toxicity assessment of oil field produced water treated by evaporative processes to produce water to irrigation. Water Sci Technol 62:693–700

    Article  CAS  Google Scholar 

  9. Benito JM, Ríos G, Gutiérrez B, Pazos C, Coca J (1999) Integrated process for the removal of emulsified oils from effluents in the steel industry. Sep Sci Technol 34:3031–3043

    Article  CAS  Google Scholar 

  10. Benito JM, Ríos G, Ortea E, Fernández E, Cambiella A, Pazos C, Coca J (2002) Design and construction of a modular pilot plant for the treatment of oil-containing wastewaters. Desalination 147:5–10

    Article  CAS  Google Scholar 

  11. Benito JM, Cambiella A, Lobo A, Gutiérrez G, Coca J, Pazos C (2010) Formulation, characterization and treatment of metalworking oil-in-water emulsions. Clean Technol Environ Policy 12:31–41

    Article  CAS  Google Scholar 

  12. Cambiella A, Ortea E, Ríos G, Benito JM, Pazos C, Coca J (2006) Treatment of oil-in-water emulsions: performance of a sawdust bed filter. J Hazard Mater 131:195–199

    Article  CAS  Google Scholar 

  13. Cañizares P, García-Gómez J, Martínez F, Rodrigo MA (2004) Evaluation of a simple batch distillation process for treating wastes from metalworking industries. J Chem Technol Biotechnol 79:533–539

    Article  Google Scholar 

  14. Chakrabarty B, Ghoshal AK, Purkait MK (2010) Cross-flow ultrafiltration of stable oil-in-water emulsion using polysulfone membranes. Chem Eng J 165:447–456

    Article  CAS  Google Scholar 

  15. Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic, Lancaster

    Google Scholar 

  16. Cheryan M, Rajagopalan N (1998) Membrane processing of oily streams. Wastewater treatment and waste reduction. J Membr Sci 151:13–28

    Article  CAS  Google Scholar 

  17. Chon K, Kim SJ, Moon J, Cho J (2012) Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant. Water Res 46:1803–1816

    Article  CAS  Google Scholar 

  18. Coca J, Gutiérrez G, Benito JM (2011) Treatment of oily wastewater. In: Coca-Prados J, Gutiérrez-Cervelló G (eds) Water purification and management. Springer, Dordrecht

    Chapter  Google Scholar 

  19. De Vicente J, Klingenberg DJ, Hidalgo-Álvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7:3701–3710

    Article  Google Scholar 

  20. Deschamps G, Caruel H, Borredon M-E, Albasi C, Riba J-P, Bonnin C, Vignoles C (2003) Oil removal from water by sorption on hydrophobic cotton fibers. 2. Study of sorption properties in dynamic mode. Environ Sci Technol 37:5034–5039

    Article  CAS  Google Scholar 

  21. Di Palma L, Ferrantelli P, Merli C, Petrucci E (2002) Treatment of industrial landfill leachate by means of evaporation and reverse osmosis. Waste Manag 22:951–955

    Article  Google Scholar 

  22. Dong Y, Su Y, Chen W, Peng J, Zhang Y, Jiang Z (2011) Ultrafiltration enhanced with activated carbon adsorption for efficient dye removal from aqueous solution. Chin J Chem Eng 19:863–869

    Article  CAS  Google Scholar 

  23. Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551

    Article  Google Scholar 

  24. Fingas M (2000) The basics of oil spill cleanup, 2nd edn. Lewis Publishers/CRC Press, Boca Raton

    Book  Google Scholar 

  25. Fitzke B, Blume T, Wienands H, Cambiella A (2012) Hybrid processes for the treatment of leachate from landfills. In: Coca-Prados J, Gutiérrez-Cervelló G (eds) Economic sustainability and environmental protection in Medit­erranean countries through clean manufacturing methods. Springer, Dordrecht

    Google Scholar 

  26. Gallego-Lizon T, Edwards E, Lobiundo G, Freitas dos Santos L (2002) Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes. J Membr Sci 197:309–319

    Article  CAS  Google Scholar 

  27. Ghidossi R, Veyret D, Scotto JL, Jalabert T, Moulin P (2009) Ferry oily wastewater treatment. Sep Purif Technol 64:296–303

    Article  CAS  Google Scholar 

  28. Gryta M, Karakulski K, Morawski AW (2001) Purification of oily wastewater by hybrid UF/MD. Water Res 35:3665–3669

    Article  CAS  Google Scholar 

  29. Gutiérrez G, Cambiella A, Benito JM, Pazos C, Coca J (2007) The effect of additives on the treatment of oil-in-water emulsions by vacuum evaporation. J Hazard Mater 144:649–654

    Article  Google Scholar 

  30. Gutiérrez G, Lobo A, Allende D, Cambiella A, Pazos C, Coca J, Benito JM (2008) Influence of coagulant salt addition on the treatment of oil-in-water emulsions by centrifugation, ultrafiltration and vacuum evaporation. Sep Sci Technol 43:1884–1895

    Article  Google Scholar 

  31. Gutiérrez G, Benito JM, Coca J, Pazos C (2009) Vacuum evaporation of waste oil-in-water emulsions from a copper metalworking industry. Ind Eng Chem Res 48:2100–2106

    Article  Google Scholar 

  32. Gutiérrez G, Benito JM, Coca J, Pazos C (2010) Vacuum evaporation of surfactant solutions and oil-in-water emulsions. Chem Eng J 162:201–207

    Article  Google Scholar 

  33. Gutiérrez G, Lobo A, Benito JM, Coca J, Pazos C (2011) Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation. J Hazard Mater 185:1569–1574

    Article  Google Scholar 

  34. Hilal N, Busca G, Hankins N, Mohammad AW (2004) The use of ultrafiltration and nanofiltration membranes in the treatment of metal-working fluids. Desalination 167:227–238

    Article  CAS  Google Scholar 

  35. Hilal N, Busca G, Rozada F, Hankins N (2005) Use of activated carbon to polish effluent from metalworking treatment plant: comparison of different streams. Desalination 185:297–306

    Article  CAS  Google Scholar 

  36. Ibrahim S, Wang S, Ang HM (2010) Removal of emulsified oil from oily wastewater using agricultural waste barley straw. Biochem Eng J 49:78–83

    Article  CAS  Google Scholar 

  37. Jevons K, Awe M (2010) Economic benefits of membrane technology vs. evaporator. Desalination 250:961–963

    Article  CAS  Google Scholar 

  38. Jönsson AS, Trägårdh G (1990) Ultrafiltration applications. Desalination 77:135–179

    Google Scholar 

  39. Karakulski K, Morawski AW (2002) Treatment of spent emulsion from a cable factory by an integrated UF/NF membrane system. Desalination 149:163–167

    Article  CAS  Google Scholar 

  40. Karakulski K, Kozlowski A, Morawski AW (1995) Purification of oily wastewater by ultrafiltration. Sep Technol 5:197–205

    Article  CAS  Google Scholar 

  41. Karakulski K, Morawski WA, Grzechulska J (1998) Purification of bilge water by hybrid ultrafiltration and photocatalytic processes. Sep Purif Technol 14:163–173

    Article  CAS  Google Scholar 

  42. Kenneth JL (1983) Demulsification: industrial applications. Marcel Dekker, New York

    Google Scholar 

  43. Kim B-S, Harriott P (1987) Critical entry pressure for liquids in hydrophobic membranes. J Colloid Interface Sci 115:1–8

    Article  CAS  Google Scholar 

  44. Klein Wolterink JW, Hess M, Schoof LAA, Wijnen JW (2004) Optimum solutions for collecting, treatment and disposal of relevant ship-generated solid and liquid wastes. Final report. EU Project Med.B4.4100.97.0415.8

    Google Scholar 

  45. Klingenberg DJ (2001) Magnetorheology: applications and challenges. AIChE J 47:246–249

    Article  CAS  Google Scholar 

  46. Knoblock MD, Sutton PM, Mishra PN, Gupta K, Janson A (1994) Membrane biological reactor system for treatment of oily wastewaters. Water Environ Res 66:133–139

    Article  CAS  Google Scholar 

  47. Li J, Gu Y (2005) Coalescence of oil-in-water emulsions in fibrous and granular beds. Sep Purif Technol 42:1–13

    Article  Google Scholar 

  48. Libralato G, Volpi Ghirardini A, Avezzù F (2008) Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater. J Hazard Mater 153:928–936

    Article  CAS  Google Scholar 

  49. Maiti S, Mishra IM, Bhattacharya SD, Joshi JK (2011) Removal of oil-in-water emulsion using a packed bed of commercial resin. Colloid Surf A-Physicochem Eng Asp 389:291–298

    Article  CAS  Google Scholar 

  50. Malamis S, Katsou E, Stylianou M, Haralambous KJ, Loizidou M (2010) Copper removal from sludge permeate with ultrafiltration membranes using zeolite, bentonite and vermiculite as adsorbents. Water Sci Technol 61:581–589

    Article  CAS  Google Scholar 

  51. Malamis S, Katsou E, Haralambous KJ (2011) Study of Ni(II), Cu(II), Pb(II), and Zn(II) removal using sludge and minerals followed by MF/UF. Water Air Soil Pollut 218:81–92

    Article  CAS  Google Scholar 

  52. Mao W, Ma H, Wang B (2010) Performance of batch vacuum distillation process with promoters on coke-plant wastewater treatment. Chem Eng J 160:232–238

    Article  CAS  Google Scholar 

  53. Menon VB, Wasan DT (1985) Demulsification. In: Becher P (ed) Encyclopedia of emulsion technology, vol 2. Marcel Dekker, New York

    Google Scholar 

  54. Mohammadi T, Esmaeelifar A (2005) Wastewater treatment of a vegetable oil factory by a hybrid ultrafiltration-activated carbon process. J Membr Sci 254:129–137

    Article  CAS  Google Scholar 

  55. Mondal S, Wickramasinghe SR (2008) Produced water treatment by nanofiltration and reverse osmosis membranes. J Membr Sci 322:162–170

    Article  CAS  Google Scholar 

  56. Mondal S, Hsiao C-L, Wickramasinghe SR (2008) Nanofiltration/reverse osmosis for treatment of coproduced waters. Environ Prog 27:173–179

    Article  CAS  Google Scholar 

  57. Mysore D, Viraraghavan T, Jin Y-C (2005) Treatment of oily waters using vermiculite. Water Res 39:2643–2653

    Article  CAS  Google Scholar 

  58. New Logic Research (2002) Using vibrating membranes to treat oily wastewater from a waste hauling facility. http://www.vsep.com/pdf/OilyWastewater.pdf

  59. New Logic Research (2004) Using VSEP to treat produced water. http://www.vsep.com/pdf/ProducedWater.pdf

  60. Norouzbahari S, Roostaazad R, Hesampour M (2009) Crude oil desalter effluent treatment by a hybrid UF/RO membrane separation process. Desalination 238:174–182

    Article  CAS  Google Scholar 

  61. Olsson M, Lindskog N (1995) Membrane technology used for waste water treatment within the Volvo Group. Proc Euromembrane’ 95(1):525–528

    Google Scholar 

  62. Otero M, Rozada F, Morán A, Calvo LF, García AI (2009) Removal of heavy metals from aqueous solution by sewage sludge based sorbents: competitive effects. Desalination 239:46–57

    Article  CAS  Google Scholar 

  63. Peeters JG, Theodoulou SL (2005) Membrane technology treating oily wastewater for reuse. NACE corrosion conference 2005, Houston, 05534

    Google Scholar 

  64. Peng H, Tremblay AY (2008) Membrane regeneration and filtration modelling of oily wastewaters. J Membr Sci 324:59–66

    Article  CAS  Google Scholar 

  65. Peng H, Tremblay AY (2008) The selective removal of oil from wastewaters while minimizing concentrate production using a membrane cascade. Desalination 229:318–330

    Article  CAS  Google Scholar 

  66. Peng H, Tremblay AY, Veinot DE (2005) The use of backflushed coalescing microfiltration as a pretreatment for the ultrafiltration of bilge water. Desalination 181:109–120

    Article  CAS  Google Scholar 

  67. Rahmah AU, Abdullah MA (2011) Evaluation of Malaysian Ceiba pentandra (L.) Gaertn. for oily water filtration using factorial design. Desalination 266:51–55

    Article  Google Scholar 

  68. Rahman H, Hawlader MNA, Malek A (2003) An experiment with a single-effect submerged vertical tube evaporator in multi-effect desalination. Desalination 156:91–100

    Article  CAS  Google Scholar 

  69. Rankin PJ, Ginder JM, Klingenberg DJ (1998) Electro- and magneto-rheology. Curr Op Colloid Interface Sci 3:373–381

    Article  CAS  Google Scholar 

  70. Salahi A, Mohammadi T (2011) Oily wastewater treatment by ultrafiltration using Taguchi experimental design. Water Sci Technol 63:1476–1484

    Article  CAS  Google Scholar 

  71. Šećerov Sokolović RM, Govedarica DD, Sokolović DS (2010) Separation of oil-in-water emulsion using two coalescers of different geometry. J Hazard Mater 175:1001–1006

    Article  Google Scholar 

  72. Soma J, Papadopoulos KD (1995) Flow of dilute, sub-micron emulsions in granular porous media: effects of pH and ionic strength. Colloid Surf A-Physicochem Eng Asp 101:51–61

    Article  CAS  Google Scholar 

  73. Specht H (1997) Wirtschaftlich weil abfallarm: membranfiltration und Vakuumverdampfung. Metalloberfläche 51:410–415

    CAS  Google Scholar 

  74. Srinivasan A, Viraraghavan T (2010) Oil removal from water using biomaterials. Bioresour Technol 101:6594–6600

    Article  CAS  Google Scholar 

  75. Strathmann H (1976) Membrane separation processes in advanced waste water treatment. Pure Appl Chem 46:213–220

    Article  CAS  Google Scholar 

  76. Sutton PM, Mishra PN, Crawford PM (1994) Combining biological and physical processes for complete treatment of oily wastewaters. Int Biodeterior Biodegrad 33:3–21

    Article  CAS  Google Scholar 

  77. Syed S, Alhazzaa MI, Asif M (2011) Treatment of oily water using hydrophobic nano-silica. Chem Eng J 167:99–103

    Article  CAS  Google Scholar 

  78. Tang L, Tan X-J, Cui F-Y, Zhou Q, Yin J (2007) Reuse of carwash wastewater with hollow fiber membrane aided by enhanced coagulation and activated carbon treatments. Water Sci Technol 56(12):111–118

    Article  CAS  Google Scholar 

  79. Teas Ch, Kalligeros S, Zanikos F, Stournas S, Lois E, Anastopoulos G (2001) Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 140:259–264

    Article  CAS  Google Scholar 

  80. Teckentrup A, Pahl MH (1996) Querstromfiltration von Emulsionen mit unterschiedlichen Tropfenverteilungen. Chem Ing Tech 68:279–283

    Article  CAS  Google Scholar 

  81. Tirmizi NP, Raghuraman B, Wiencek J (1996) Demulsification of water/oil/solid emulsions by hollow-fiber membranes. AIChE J 42:1263–1276

    Article  CAS  Google Scholar 

  82. Tomaszewska M, Orecki A, Karakulski K (2005) Treatment of bilge water using a combination of ultrafiltration and reverse osmosis. Desalination 185:203–212

    Article  CAS  Google Scholar 

  83. Ulicny JC, Golden MA (2005) Oil spill recovery method using surface-treated iron powder. Patent US2005/0139550 A1

    Google Scholar 

  84. Von Mylius U (1992) Membrane filtration processes in treatment and recycling of metal finishing waste waters. Recents Prog Genie Procedes 21:283–287

    Google Scholar 

  85. Wang D, Silbaugh T, Pfeffer R, Lin YS (2010) Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels. Powder Technol 203:298–309

    Article  CAS  Google Scholar 

  86. Yan L, Ma H, Wang B, Mao W, Chen Y (2010) Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation. J Hazard Mater 178:1120–1124

    Article  CAS  Google Scholar 

  87. Yang W, Cicek N, Ilg J (2006) State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America. J Membr Sci 270:201–211

    Article  CAS  Google Scholar 

  88. Yang Y, Chen R, Xing W (2011) Integration of ceramic membrane microfiltration with powdered activated carbon for advanced treatment of oil-in-water emulsion. Sep Purif Technol 76:373–377

    Article  CAS  Google Scholar 

  89. Zaidi A, Simms K, Kok S (1992) The use of micro/ultrafiltration for the removal of oil and suspended solids from oilfield brines. Water Sci Technol 25(10):163–176

    CAS  Google Scholar 

  90. Zhang H, Fang S, Ye C, Wang M, Cheng H, Wen H, Meng X (2008) Treatment of waste filature oil/water emulsion by combined demulsification and reverse osmosis. Sep Purif Technol 63:264–268

    Article  CAS  Google Scholar 

  91. Zhao Q, Ye Z, Zhang M (2010) Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation. Chemosphere 80:947–950

    Article  CAS  Google Scholar 

  92. Zhao M-Q, Huang J-Q, Zhang Q, Luo W-L, Wei F (2011) Improvement of oil adsorption performance by a sponge-like natural vermiculite-carbon nanotube hybrid. Appl Clay Sci 53:1–7

    Article  CAS  Google Scholar 

  93. Zhou Y-B, Tang X-Y, Hu X-M, Fritschi S, Lu J (2008) Emulsified oily wastewater treatment using a hybrid-modified resin and activated carbon system. Sep Purif Technol 63:400–406

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Coca-Prados .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Coca-Prados, J., Gutiérrez, G., Benito, J.M. (2013). Treatment of Oily Wastewater by Membrane Hybrid Processes. In: Coca-Prados, J., Gutiérrez-Cervelló, G. (eds) Economic Sustainability and Environmental Protection in Mediterranean Countries through Clean Manufacturing Methods. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5079-1_3

Download citation

Publish with us

Policies and ethics