Skip to main content

Osteoporosis

  • Chapter
  • First Online:
The Epidemiology of Aging
  • 4159 Accesses

Abstract

Osteoporosis is a skeletal disorder that weakens bone and predisposes an individual to an increased risk of fracture. It has a major public health impact and current demographic trends point to an increasing number of individuals with osteoporosis worldwide. Current prevalence estimates using bone mineral density (BMD) criteria suggest that 50% of women and 32% of men have osteopenia (low bone mass) and 11% of women and 2% of men have osteoporosis. Hip fractures are the most devastating type of fracture, with major impacts on mortality, disability and institutionalism. Secular declines in hip fracture rates have been described for North America, but secular increases in hip fracture rates have been described for Asia. Age and low BMD are major risk factors for fracture in both men and women. Of importance, individuals who have the greatest number of risk factors have an increased risk of fracture. The World Health Organization has developed a fracture risk calculator (FRAX®) and many treatment guidelines incorporate FRAX® into their recommendation on who to treat. Future research needs include the identification of common genes that have large effects, the further understanding of the diabetes-bone-fat interface, and the identification of novel biomarkers of risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMD:

Bone Mineral Density

BMI:

Body Mass Index

DALY:

Disability Adjusted Life Years

DXA:

Duel-energy X-ray Absorptiometry

FSH:

Follicle-Stimulating Hormone

HR:

Hazard Ratio

IGF:

Insulin-like Growth Factor

IOF:

International Osteoporosis Foundation

MrOS:

Osteoporotic Fractures in Men Study

MSC:

Mesenchymal Stem Cells

NHANES:

National Health and Nutrition Examination Survey

NOF:

National Osteoporosis Foundation

OPG:

Osteoprotegerin

QCT:

Quantitative Computed Tomography

RANKL:

Receptor Activator of Nuclear factor κB Ligand

SD:

Standard Deviation

SMR:

Standardized Mortality Ratio

SWAN:

Study of Women’s Health Across the Nation

US:

United States

vBMD:

Volumetric Bone Mineral Density

WHI:

Women’s Health Initiative

WHO:

World Health Organization

25(OH)D:

25-hydroxyvitamin D

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy (2000) Osteoporosis prevention, diagnosis and therapy. NIH Consensus Statement 17(1):1–45

    Google Scholar 

  2. Kostenuik PJ (2005) Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 5(6):618–625

    Article  PubMed  CAS  Google Scholar 

  3. Mizuno A, Kanno T, Hoshi M et al (2002) Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J Bone Miner Metab 20(6):337–344

    Article  PubMed  CAS  Google Scholar 

  4. Nakamura M, Udagawa N, Matsuura S et al (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144(12):5441–5449

    Article  PubMed  CAS  Google Scholar 

  5. Khosla S, Melton LJ 3rd, Atkinson EJ et al (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86(8):3555–3561

    Article  PubMed  CAS  Google Scholar 

  6. Falahati-Nini A, Riggs BL, Atkinson EJ et al (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106(12):1553–1560

    Article  PubMed  CAS  Google Scholar 

  7. Clarke BL, Khosla S (2010) Physiology of bone loss. Radiol Clin North Am 48(3):483–495

    Article  PubMed  Google Scholar 

  8. Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475

    Article  PubMed  Google Scholar 

  9. Gronskag AB, Romundstad P, Forsmo S et al (2011) Excess mortality after hip fracture among elderly women in Norway: the HUNT study. Osteoporos Int 23:1807–1811

    Article  PubMed  Google Scholar 

  10. Haentjens P, Johnell O, Kanis JA et al (2004) Evidence from data searches and life-table analyses for gender-related differences in absolute risk of hip fracture after Colles’ or spine fracture: Colles’ fracture as an early and sensitive marker of skeletal fragility in white men. J Bone Miner Res 19(12):1933–1944

    Article  PubMed  Google Scholar 

  11. Haentjens P, Magaziner J, Colon-Emeric CS et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390

    PubMed  Google Scholar 

  12. Leblanc ES, Hillier TA, Pedula KL et al (2011) Hip fracture and increased short-term but not long-term mortality in healthy older women. Arch Intern Med 171(20):1831–1837

    Article  PubMed  Google Scholar 

  13. Jacobsen SJ, Goldberg J, Miles TP et al (1992) Race and sex differences in mortality following fracture of the hip. Am J Public Health 82(8):1147–1150

    Article  PubMed  CAS  Google Scholar 

  14. Brauer CA, Coca-Perraillon M, Cutler DM et al (2009) Incidence and mortality of hip fractures in the United States. JAMA 302(14):1573–1579

    Article  PubMed  CAS  Google Scholar 

  15. Center JR, Nguyen TV, Schneider D et al (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353(9156):878–882

    Article  PubMed  CAS  Google Scholar 

  16. Bliuc D, Nguyen ND, Milch VE et al (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301(5):513–521

    Article  PubMed  CAS  Google Scholar 

  17. Cauley JA, Thompson DE, Ensrud KC et al (2000) Risk of mortality following clinical fractures. Osteoporos Int 11(7):556–561

    Article  PubMed  CAS  Google Scholar 

  18. Ensrud KE, Thompson DE, Cauley JA et al (2000) Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group. J Am Geriatr Soc 48(3):241–249

    PubMed  CAS  Google Scholar 

  19. Kado DM, Browner WS, Blackwell T et al (2000) Rate of bone loss is associated with mortality in older women: a prospective study. J Bone Miner Res 15(10):1974–1980

    Article  PubMed  CAS  Google Scholar 

  20. Ismail AA, O’Neill TW, Cooper C et al (1998) Mortality associated with vertebral deformity in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 8(3):291–297

    Article  PubMed  CAS  Google Scholar 

  21. Magaziner J, Lydick E, Hawkes W et al (1997) Excess mortality attributable to hip fracture in white women aged 70 years and older. Am J Public Health 87(10):1630–1636

    Article  PubMed  CAS  Google Scholar 

  22. Ettinger B, Black DM, Nevitt MC et al (1992) Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 7(4):449–456

    Article  PubMed  CAS  Google Scholar 

  23. Silverman SL, Minshall ME, Shen W et al (2001) The relationship of health-related quality of life to prevalent and incident vertebral fractures in postmenopausal women with osteoporosis: results from the Multiple Outcomes of Raloxifene Evaluation Study. Arthritis Rheum 44(11):2611–2619

    Article  PubMed  CAS  Google Scholar 

  24. Fink HA, Milavetz DL, Palermo L et al (2005) What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res 20(7):1216–1222

    Article  PubMed  Google Scholar 

  25. Fink HA, Ensrud KE, Nelson DB et al (2003) Disability after clinical fracture in postmenopausal women with low bone density: the fracture intervention trial (FIT). Osteoporos Int 14(1):69–76

    Article  PubMed  CAS  Google Scholar 

  26. Nevitt MC, Ettinger B, Black DM et al (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128(10):793–800

    PubMed  CAS  Google Scholar 

  27. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733, Epub 2006 Sep 16

    Article  PubMed  CAS  Google Scholar 

  28. Edwards B, Song J, Dunlop P et al (2010) Functional decline after incident wrist fractures – Study of Osteoporotic Fractures: prospective cohort study. BMJ 341:c3324

    Article  PubMed  Google Scholar 

  29. Heaney RP, Abrams S, Dawson-Hughes B et al (2000) Peak bone mass. Osteoporos Int 11(12):985–1009

    Article  PubMed  CAS  Google Scholar 

  30. Looker AC, Melton LJ 3rd, Borrud LG et al (2011) Changes in femur neck bone density in US adults between 1988–1994 and 2005–2008: demographic patterns and possible determinants. Osteoporos Int 23:771–780

    Article  PubMed  Google Scholar 

  31. Looker AC, Melton LJ 3rd, Borrud LG et al (2011) Lumbar spine bone mineral density in US adults: demographic patterns and relationship with femur neck skeletal status. Osteoporos Int 23:1351–1360

    Article  PubMed  Google Scholar 

  32. Darby AJ (1981) Bone formation and resorption in postmenopausal osteoporosis. Lancet 2(8245):536

    Article  PubMed  CAS  Google Scholar 

  33. Jilka RL (2003) Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol 41(3):182–185

    Article  PubMed  Google Scholar 

  34. Reeve J, Pearson J, Mitchell A et al (1995) Evolution of spinal bone loss and biochemical markers of bone remodeling after menopause in normal women. Calcif Tissue Int 57(2):105–110

    Article  PubMed  CAS  Google Scholar 

  35. Cosman F, Nieves J, Wilkinson C et al (1996) Bone density change and biochemical indices of skeletal turnover. Calcif Tissue Int 58(4):236–243

    PubMed  CAS  Google Scholar 

  36. Johnston CC Jr, Hui SL, Witt RM et al (1985) Early menopausal changes in bone mass and sex steroids. J Clin Endocrinol Metab 61(5):905–911

    Article  PubMed  CAS  Google Scholar 

  37. Steinberg KK, Freni-Titulaer LW, DePuey EG et al (1989) Sex steroids and bone density in premenopausal and perimenopausal women. J Clin Endocrinol Metab 69(3):533–539

    Article  PubMed  CAS  Google Scholar 

  38. Ravn P, Hetland ML, Overgaard K et al (1994) Premenopausal and postmenopausal changes in bone mineral density of the proximal femur measured by dual-energy X-ray absorptiometry. J Bone Miner Res 9(12):1975–1980

    Article  PubMed  CAS  Google Scholar 

  39. Pinkerton JV, Stovall DW (2010) Reproductive aging, menopause, and health outcomes. Ann N Y Acad Sci 1204:169–178

    Article  PubMed  Google Scholar 

  40. Riggs BL (1987) Pathogenesis of osteoporosis. Am J Obstet Gynecol 156(5):1342–1346

    PubMed  CAS  Google Scholar 

  41. Slemenda C, Longcope C, Peacock M et al (1996) Sex steroids, bone mass, and bone loss. A prospective study of pre-, peri-, and postmenopausal women. J Clin Invest 97(1):14–21

    Article  PubMed  CAS  Google Scholar 

  42. Sowers M, Crutchfield M, Bandekar R et al (1998) Bone mineral density and its change in pre-and perimenopausal white women: the Michigan Bone Health Study. J Bone Miner Res 13(7):1134–1140

    Article  PubMed  CAS  Google Scholar 

  43. Recker R, Lappe J, Davies K et al (2000) Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res 15(10):1965–1973

    Article  PubMed  CAS  Google Scholar 

  44. Finkelstein JS, Brockwell SE, Mehta V et al (2008) Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab 93(3):861–868

    Article  PubMed  CAS  Google Scholar 

  45. Sowers MR, Jannausch M, McConnell D et al (2006) Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metab 91(4):1261–1267

    Article  PubMed  CAS  Google Scholar 

  46. Ahlborg HG, Johnell O, Turner CH et al (2003) Bone loss and bone size after menopause. N Engl J Med 349(4):327–334

    Article  PubMed  Google Scholar 

  47. Li JY, Tawfeek H, Bedi B et al (2011) Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci U S A 108(2):768–773

    Article  PubMed  CAS  Google Scholar 

  48. Roggia C, Gao Y, Cenci S et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 98(24):13960–13965

    Article  PubMed  CAS  Google Scholar 

  49. Kosa JP, Balla B, Speer G et al (2009) Effect of menopause on gene expression pattern in bone tissue of nonosteoporotic women. Menopause 16(2):367–377

    Article  PubMed  Google Scholar 

  50. Cawthon PM, Ewing SK, McCulloch CE et al (2009) Loss of hip BMD in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 24(10):1728–1735

    Article  PubMed  Google Scholar 

  51. Ensrud KE, Palermo L, Black DM et al (1995) Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res 10(11):1778–1787

    Article  PubMed  CAS  Google Scholar 

  52. Riggs BL, Melton Iii LJ 3rd, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19(12):1945–1954

    Article  PubMed  Google Scholar 

  53. Zebaze RM, Ghasem-Zadeh A, Bohte A et al (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736

    Article  PubMed  Google Scholar 

  54. Rowe JW, Kahn RL (1987) Human aging: usual and successful. Science 237(4811):143–149

    Article  PubMed  CAS  Google Scholar 

  55. Cauley JA, Lui LY, Barnes D et al (2009) Successful skeletal aging: a marker of low fracture risk and longevity. J Bone Minee Res 24(1):134–143

    Article  PubMed  CAS  Google Scholar 

  56. Melton LJ 3rd, Crowson CS, O’Fallon WM (1999) Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int 9(1):29–37

    Article  PubMed  Google Scholar 

  57. Kanis JA, Johnell O, De Laet C et al (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17(7):1237–1244

    Article  PubMed  Google Scholar 

  58. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

    Article  PubMed  Google Scholar 

  59. Morales-Torres J, Gutierrez-Urena S, Osteoporosis Committee of Pan-American League of Associations for Rheumatology (2004) The burden of osteoporosis in Latin America. Osteoporos Int 15(8):625–632

    Article  PubMed  Google Scholar 

  60. Cauley JA, Palermo L, Vogt M et al (2008) Prevalent vertebral fractures in black women and white women. J Bone Miner Res 23(9):1458–1467

    Article  PubMed  Google Scholar 

  61. Clark P, Cons-Molina F, Deleze M et al (2009) The prevalence of radiographic vertebral fractures in Latin American countries: the Latin American Vertebral Osteoporosis Study (LAVOS). Osteoporos Int 20(2):275–282

    Article  PubMed  CAS  Google Scholar 

  62. Leslie WD, O’Donnell S, Jean S et al (2009) Trends in hip fracture rates in Canada. JAMA 302(8):883–889

    Article  PubMed  CAS  Google Scholar 

  63. Cooper C, Cole ZA, Holroyd CR et al (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22(5):1277–1288

    Article  PubMed  CAS  Google Scholar 

  64. Xia WB, He SL, Xu L et al (2011) Rapidly increasing rates of hip fracture in Beijing, China. J Bone Miner Res 27:125–129

    Article  Google Scholar 

  65. Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289

    Article  PubMed  CAS  Google Scholar 

  66. Zingmond DS, Melton LJ 3rd, Silverman SL (2004) Increasing hip fracture incidence in California Hispanics, 1983 to 2000. Osteoporos Int 15(8):603–610

    Article  PubMed  Google Scholar 

  67. Johansson H, Clark P, Carlos F et al (2011) Increasing age- and sex-specific rates of hip fracture in Mexico: a survey of the Mexican Institute of Social Security. Osteoporos Int 22(8):2359–2364

    Article  PubMed  CAS  Google Scholar 

  68. Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475

    Article  PubMed  CAS  Google Scholar 

  69. Looker AC, Melton LJ 3rd, Harris TB et al (2010) Prevalence and trends in low femur bone density among older US adults: NHANES 2005–2006 compared with NHANES III. J Bone Miner Res 25(1):64–71

    Article  PubMed  Google Scholar 

  70. Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18(11):1947–1954

    Article  PubMed  Google Scholar 

  71. Cummings SR, Cawthon PM, Ensrud KE et al (2006) BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res 21(10):1550–1556

    Article  PubMed  Google Scholar 

  72. Cooper C, Atkinson EJ, O’Fallon WM et al (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7(2):221–227

    Article  PubMed  CAS  Google Scholar 

  73. Cauley JA, Hochberg MC, Lui LY et al (2007) Long-term risk of incident vertebral fractures. JAMA 298(23):2761–2767

    Article  PubMed  CAS  Google Scholar 

  74. Taylor BC, Schreiner PJ, Stone KL et al (2004) Long-term prediction of incident hip fracture risk in elderly white women: study of osteoporotic fractures. J Am Geriatr Soc 52(9):1479–1486

    Article  PubMed  Google Scholar 

  75. Cauley JA, Wu L, Wampler NS et al (2007) Clinical risk factors for fractures in multi-ethnic women: the Women’s Health Initiative. J Bone Miner Res 22(11):1816–1826

    Article  PubMed  Google Scholar 

  76. Cauley JA, Lui LY, Ensrud KE et al (2005) Bone mineral density and the risk of incident nonspinal fractures in black and white women. JAMA 293(17):2102–2108

    Article  PubMed  CAS  Google Scholar 

  77. Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288(15):1889–1897

    Article  PubMed  Google Scholar 

  78. Cummings SR, Black DM, Nevitt MC et al (1990) Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. JAMA 263(5):665–668

    Article  PubMed  CAS  Google Scholar 

  79. Lewis CE, Ewing SK, Taylor BC et al (2007) Predictors of non-spine fracture in elderly men: the MrOS study. J Bone Miner Res 22(2):211–219

    Article  PubMed  Google Scholar 

  80. Robbins J, Aragaki AK, Kooperberg C et al (2007) Factors associated with 5-year risk of hip fracture in postmenopausal women. JAMA 298(20):2389–2398

    Article  PubMed  CAS  Google Scholar 

  81. Black DM, Steinbuch M, Palermo L et al (2001) An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int 12(7):519–528

    Article  PubMed  CAS  Google Scholar 

  82. Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046

    Article  PubMed  CAS  Google Scholar 

  83. Kanis JA, Bianchi G, Bilezikian JP et al (2011) Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos Int 22(11):2789–2798

    Article  PubMed  CAS  Google Scholar 

  84. Dawson-Hughes B, Tosteson AN, Melton LJ 3rd et al (2008) Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int 19(4):449–458

    Article  PubMed  CAS  Google Scholar 

  85. Johansson H, Kanis JA, Oden A et al (2009) BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos Int 20(10): 1675–1682

    Article  PubMed  CAS  Google Scholar 

  86. Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31(5):629–662

    Article  PubMed  CAS  Google Scholar 

  87. Cowie CC, Rust KF, Ford ES et al (2009) Full accounting of diabetes and pre-diabetes in the U.S. population in 1988–1994 and 2005–2006. Diabetes Care 32(2):287–294

    Article  PubMed  Google Scholar 

  88. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18(4):427–444

    Article  PubMed  CAS  Google Scholar 

  89. Janghorbani M, Van Dam RM, Willett WC et al (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166(5):495–505

    Article  PubMed  Google Scholar 

  90. Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91(9):3404–3410

    Article  PubMed  CAS  Google Scholar 

  91. Melton LJ 3rd, Riggs BL, Leibson CL et al (2008) A bone structural basis for fracture risk in diabetes. J Clin Endocrinol Metab 93(12):4804–4809

    Article  PubMed  CAS  Google Scholar 

  92. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2(1):35–43

    Article  PubMed  CAS  Google Scholar 

  93. Baron R (2003) General principles of bone biology. American Society for Bone and Mineral Research, Washington, DC

    Google Scholar 

  94. Wang Y, Wan C, Gilbert SR et al (2007) Oxygen sensing and osteogenesis. Ann N Y Acad Sci 1117:1–11

    Article  PubMed  CAS  Google Scholar 

  95. Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343

    Article  PubMed  CAS  Google Scholar 

  96. Verma S, Rajaratnam JH, Denton J et al (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55(9):693–698

    Article  PubMed  CAS  Google Scholar 

  97. Justesen J, Stenderup K, Ebbesen EN et al (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2(3):165–171

    Article  PubMed  CAS  Google Scholar 

  98. Schafer AL, Vittinghoff E, Lang TF et al (2010) Fat infiltration of muscle, diabetes, and clinical fracture risk in older adults. J Clin Endocrinol Metab 95(11):E368–E372

    Article  PubMed  Google Scholar 

  99. Yamauchi M, Sugimoto T, Yamaguchi T et al (2001) Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol (Oxf) 55(3):341–347

    Article  CAS  Google Scholar 

  100. Schett G, Kiechl S, Bonora E et al (2004) Serum leptin level and the risk of nontraumatic fracture. Am J Med 117(12):952–956

    Article  PubMed  CAS  Google Scholar 

  101. Michaelsson K, Lind L, Frystyk J et al (2008) Serum adiponectin in elderly men does not correlate with fracture risk. J Clin Endocrinol Metab 93(10):4041–4047

    Article  PubMed  CAS  Google Scholar 

  102. Kanazawa I, Yamaguchi T, Yamamoto M et al (2009) Relationships between serum adiponectin levels versus bone mineral density, bone metabolic markers, and vertebral fractures in type 2 diabetes mellitus. Eur J Endocrinol 160(2):265–273

    Article  PubMed  CAS  Google Scholar 

  103. Araneta MR, von Muhlen D, Barrett-Connor E (2009) Sex differences in the association between adiponectin and BMD, bone loss, and fractures: the Rancho Bernardo study. J Bone Miner Res 24(12):2016–2022

    Article  PubMed  Google Scholar 

  104. Barbour KE, Zmuda JM, Boudreau R et al (2011) Adipokines and the risk of fracture in older adults. J Bone Miner Res 26(7):1568–1576

    Article  PubMed  CAS  Google Scholar 

  105. Cranney A, Horsley T, O’Donnell T et al (2007) Effectiveness and safety of vitamin D in relation to bone health. Evidence Report/Technical Assessment No 158 (Prepared by the University of Ottawa Evidence-based Practice Center (UO-EPC) under Contract No 290-02-0021). AHRQ Publication No. 07-E013. Agency for Healthcare Research and Quality, Rockville, MD

    Google Scholar 

  106. Avenell A, Gillespie WJ, Gillespie LD et al (2009) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev (2):CD000227

    Google Scholar 

  107. Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354(7):669–683

    Article  PubMed  CAS  Google Scholar 

  108. Group D (2010) Patient level pooled analysis of 68,500 patients from seven major vitamin D fracture trials in US and Europe. BMJ 340:b5463

    Article  Google Scholar 

  109. Bischoff-Ferrari HA, Willett WC, Wong JB et al (2009) Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med 169(6):551–561

    Article  PubMed  CAS  Google Scholar 

  110. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  PubMed  CAS  Google Scholar 

  111. Cauley JA, Lacroix AZ, Wu L et al (2008) Serum 25-hydroxyvitamin D concentrations and risk for hip fractures. Ann Intern Med 149(4):242–250

    PubMed  Google Scholar 

  112. Cauley JA, Danielson ME, Boudreau R et al (2011) Serum 25-hydroxyvitamin D and clinical fracture risk in a multiethnic cohort of women: the Women’s Health Initiative (WHI). J Bone Miner Res 26(10):2378–2388

    Article  PubMed  CAS  Google Scholar 

  113. Cauley JA, Parimi N, Ensrud KE et al (2010) Serum 25-hydroxyvitamin D and the risk of hip and nonspine fractures in older men. J Bone Miner Res 25(3):545–553

    Article  PubMed  CAS  Google Scholar 

  114. Institute of Medicine (US) (2010) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for calcium and vitamin D consensus report. National Academy Press, Washington DC. http://www.iom.edu/Reports/2010/Dietary-Reference-Intakes-for-Calcium-and-Vitamin-D.aspx. Accessed 10 Jan 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane A. Cauley DrPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cauley, J.A. (2012). Osteoporosis. In: Newman, A., Cauley, J. (eds) The Epidemiology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5061-6_28

Download citation

Publish with us

Policies and ethics