Skip to main content

In Vivo Flow Cytometry Combined with Confocal Microscopy to Study Cancer Metastasis

  • Reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering

Abstract

The quantification of circulating tumor cells (CTCs) is an emerging tool to diagnose and monitor patients with cancer metastasis. A number of methods have been developed to detect CTCs. However, conventional methods are limited by invasiveness, low sensitivity and difficulty to monitor CTCs. A novel technique named in vivo flow cytometry (IVFC) can overcome those limitations. A number of outstanding studies by IVFC have been published on cancer including leukemia, liver cancer and melanoma. However, there are still numerous questions about cancer metastasis, which could be investigated by IVFC combined with confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley-Liss, New York

    Book  Google Scholar 

  2. Tuchin VV (2011) Advanced optical cytometry: methods and disease diagnoses. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Novak J, Georgakoudi I, Wei X, Prossin A, Lin CP (2004) In vivo flow cytometer for real-time detection and quantification of circulating cells. Opt Lett 29(1):77–79

    Article  Google Scholar 

  4. Zharov VP, Galanzha EI, Tuchin VV (2005) Photothermal image flow cytometry in vivo. Opt Lett 30(6):628–630

    Article  Google Scholar 

  5. Novak J, Puoris’haag M (2007) Two-color, double-slit in vivo flow cytometer. Opt Lett 32(20):2993–2995

    Article  Google Scholar 

  6. Georgakoudi I, Solban N, Novak J, Rice WL, Wei X, Hasan T, Lin CP (2004) In vivo flow cytometry: a new method for enumerating circulating cancer cells. Cancer Res 64(15):5044–5047

    Article  Google Scholar 

  7. Li Y, Guo J, Wang C, Fan Z, Liu G, Wang C, Gu Z, Damm D, Mosig A, Wei X (2011) Circulation times of prostate cancer and hepatocellular carcinoma cells by in vivo flow cytometry. Cytometry A 79(10):848–854

    Article  Google Scholar 

  8. Zharov VP, Galanzha EI, Tuchin VV (2005) Integrated photothermal flow cytometry in vivo. J Biomed Opt 10(5):051502–051513

    Article  Google Scholar 

  9. He W, Wang H, Hartmann LC, Cheng JX, Low PS (2007) In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci U S A 104(28):11760–11765

    Article  Google Scholar 

  10. Zeng Y, Xu J, Li D, Li L, Wen Z, Qu JY (2012) Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging. Opt Lett 37(13):2490–2492

    Article  Google Scholar 

  11. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, Luster AD, Scadden DT, Lin CP (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435(7044):969–973

    Article  Google Scholar 

  12. Fan ZC, Yan J, Liu GD, Tan XY, Weng XF, Wu WZ, Zhou J, Wei XB (2012) Real-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis. Cancer Res 72(10):2683–2691

    Article  Google Scholar 

  13. Li Y, Fan Z, Guo J, Liu G, Tan X, Wang C, Gu Z, Wei X (2010) Circulation times of hepatocellular carcinoma cells by in vivo flow cytometry. Chin Opt Lett 8(10):953–956

    Article  Google Scholar 

  14. Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP (2009) In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 4(12):855–860

    Article  Google Scholar 

  15. Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP (2009) In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res 69(20):7926–7934

    Article  Google Scholar 

  16. Pitsillides CM, Runnels JM, Spencer JA, Zhi L, Wu MX, Lin CP (2011) Cell labeling approaches for fluorescence-based in vivo flow cytometry. Cytometry Part A 79(10):758–765

    Article  Google Scholar 

  17. Nedosekin DA, Sarimollaoglu M, Shashkov EV, Galanzha EI, Zharov VP (2010) Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser. Opt Express 18(8):8605–8620

    Article  Google Scholar 

  18. Biris AS, Galanzha EI, Li Z, Mahmood M, Xu Y, Zharov VP (2009) In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues. J Biomed Opt 14(2):021006

    Article  Google Scholar 

  19. Damm D, Wang C, Wei X, Mosig A (2009) Cell counting for in vivo flow cytometer signals using wavelet-based dynamic peak picking. Biomedical Engineering and Informatics, 2009. BMEI’09. 2nd International Conference on., IEEE

    Google Scholar 

  20. Galanzha EI, Kokoska MS, Shashkov EV, Kim JW, Tuchin VV, Zharov VP (2009) In vivo fiber‐based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles. J Biophotonics 2(8–9):528–539

    Article  Google Scholar 

  21. Zharov VP, Galanzha EI, Shashkov EV, Kim J-W, Khlebtsov NG, Tuchin VV (2007) Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt 12(5):051503–051514

    Article  Google Scholar 

  22. Tuchin VV, Tárnok A, Zharov VP (2011) In vivo flow cytometry: a horizon of opportunities. Cytometry Part A 79(10):737–745

    Article  Google Scholar 

  23. Nedosekin DA, Sarimollaoglu M, Ye JH, Galanzha EI, Zharov VP (2011) In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers. Cytometry Part A 79(10):825–833

    Article  Google Scholar 

  24. Poellinger A, Martin JC, Ponder SL, Freund T, Hamm B, Bick U, Diekmann F (2008) Near-Infrared laser computed tomography of the breast. Acad Radiol 15(12):1545

    Article  Google Scholar 

  25. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):041101–041122

    Article  Google Scholar 

  26. Sarimollaoglu M, Nedosekin D, Simanovsky Y, Galanzha E, Zharov V (2011) In vivo photoacoustic time-of-flight velocity measurement of single cells and nanoparticles. Opt Lett 36(20):4086–4088

    Article  Google Scholar 

  27. Galanzha EI, Zharov VP (2011) In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters. Cytometry Part A 79(10):746–757

    Article  Google Scholar 

  28. Zharov VP, Galanzha EI, Shashkov EV, Khlebtsov NG, Tuchin VV (2006) In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents. Opt Lett 31(24):3623–3625

    Article  Google Scholar 

  29. Galanzha EI, Shashkov EV, Tuchin VV, Zharov VP (2008) In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytometry Part A 73(10):884–894

    Article  Google Scholar 

  30. Galanzha EI, Sarimollaoglu M, Nedosekin DA, Keyrouz SG, Mehta JL, Zharov VP (2011) In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts. Cytometry Part A 79(10):814–824

    Article  Google Scholar 

  31. Mathers C, Fat DM, Boerma JT (2008) The global burden of disease: 2004 update. World Health Organization, Geneva

    Book  Google Scholar 

  32. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  Google Scholar 

  33. Sun YF, Yang XR, Zhou J, Qiu SJ, Fan J, Xu Y (2011) Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol 137(8):1151–1173

    Article  Google Scholar 

  34. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573

    Article  Google Scholar 

  35. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  Google Scholar 

  36. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904

    Article  Google Scholar 

  37. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326

    Article  Google Scholar 

  38. Andreopoulou E, Cristofanilli M (2010) Circulating tumor cells as prognostic marker in metastatic breast cancer. Expert Rev Anticancer Ther 10(2):171–177

    Article  Google Scholar 

  39. Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8(5):329–340

    Article  Google Scholar 

  40. Boutrus S, Greiner C, Hwu D, Chan M, Kuperwasser C, Lin CP, Georgakoud I (2007) Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells. J Biomed Opt 12(2):020507

    Article  Google Scholar 

  41. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Cote D, Rowe DW, Lin CP, Scadden DT (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457(7225):92–96

    Article  Google Scholar 

  42. Fan Z, Spencer JA, Lu Y, Pitsillides CM, Singh G, Kim P, Yun SH, Toxavidis V, Strom TB, Lin CP, Koulmanda M (2010) In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response. Nat Med 16(6):718–722

    Article  Google Scholar 

  43. Lee H, Alt C, Pitsillides CM, Puoris’haag M, Lin CP (2006) In vivo imaging flow cytometer. Opt Express 14(17):7789–7800

    Article  Google Scholar 

  44. Zhong CF, Tkaczyk ER, Thomas T, Ye JY, Myc A, Bielinska AU, Cao Z, Majoros I, Keszler B, Baker JR, Norris TB (2008) Quantitative two-photon flow cytometry – in vitro and in vivo. J Biomed Opt 13(3):034008

    Article  Google Scholar 

  45. Wei X, Sipkins DA, Pitsillides CM, Novak J, Georgakoudi I, Lin CP (2005) Real-time detection of circulating apoptotic cells by in vivo flow cytometry. Mol Imaging 4(4):415–416

    Google Scholar 

  46. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X, Lu G, Timm M, Kumar A, Cote D, Veilleux I, Hedin KE, Roodman GD, Witzig TE, Kung AL, Hideshima T, Anderson KC, Lin CP, Ghobrial IM (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109(7):2708–2717

    Google Scholar 

  47. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, Jia X, Wright R, Ospina B, Carlson AL, Alt C, Burwick N, Roccaro AM, Ngo HT, Farag M, Melhem MR, Sacco A, Munshi NC, Hideshima T, Rollins BJ, Anderson KC, Kung AL, Lin CP, Ghobrial IM (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113(18):4341–4351

    Article  Google Scholar 

  48. Runnels JM, Carlson AL, Pitsillides C, Thompson B, Wu J, Spencer JA, Kohler JM, Azab A, Moreau AS, Rodig SJ, Kung AL, Anderson KC, Ghobrial IM, Lin CP (2011) Optical techniques for tracking multiple myeloma engraftment, growth, and response to therapy. J Biomed Opt 16(1):011006

    Article  Google Scholar 

  49. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 97(26):14608–14613

    Article  Google Scholar 

  50. Mehes G, Witt A, Kubista E, Ambros PF (2001) Circulating breast cancer cells are frequently apoptotic. Am J Pathol 159(1):17–20

    Article  Google Scholar 

  51. Alt C, Veilleux I, Lee H, Pitsillides CM, Cote D, Lin CP (2007) Retinal flow cytometer. Opt Lett 32(23):3450–3452

    Article  Google Scholar 

  52. Beerling E, Ritsma L, Vrisekoop N, Derksen PW, van Rheenen J (2011) Intravital microscopy: new insights into metastasis of tumors. J Cell Sci 124(Pt 3):299–310

    Article  Google Scholar 

  53. Wagner R (1839) Erlauterungstaflen zur physiologie und entwicklungsgeschichte. Leopold Voss, Leipzig

    Google Scholar 

  54. Wouters FS, Verveer PJ, Bastiaens PI (2001) Imaging biochemistry inside cells. Trends Cell Biol 11(5):203–211

    Article  Google Scholar 

  55. Chishima T, Miyagi Y, Wang X, Yamaoka H, Shimada H, Moossa AR, Hoffman RM (1997) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 57(10):2042–2047

    Google Scholar 

  56. Farina KL, Wyckoff JB, Rivera J, Lee H, Segall JE, Condeelis JS, Jones JG (1998) Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res 58(12):2528–2532

    Google Scholar 

  57. MacDonald IC, Schmidt EE, Morris VL, Chambers AF, Groom AC (1992) Intravital videomicroscopy of the chorioallantoic microcirculation: a model system for studying metastasis. Microvasc Res 44(2):185–199

    Article  Google Scholar 

  58. Naumov GN, Wilson SM, MacDonald IC, Schmidt EE, Morris VL, Groom AC, Hoffman RM, Chambers AF (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112(Pt 12):1835–1842

    Google Scholar 

  59. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614

    Article  Google Scholar 

  60. Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(Pt 13):2332–2341

    Article  Google Scholar 

  61. Le Devedec SE, Lalai R, Pont C, de Bont H, van de Water B (2010) Two-photon intravital multicolor imaging combined with inducible gene expression to distinguish metastatic behavior of breast cancer cells in vivo. Mol Imaging Biol 13(1):67–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-Bin Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Wei, XB., Fan, ZC., Wei, D., Liu, R., Suo, Y., Weng, XF. (2017). In Vivo Flow Cytometry Combined with Confocal Microscopy to Study Cancer Metastasis. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_17

Download citation

Publish with us

Policies and ethics