Skip to main content

Atmosphere Pollution Problems in Urban Areas on the Territory of Georgia

  • Conference paper
  • First Online:
Disposal of Dangerous Chemicals in Urban Areas and Mega Cities

Abstract

Air emissions from industrial facilities and motor vehicles and monitoring of the atmosphere quality in the most industrialized cities of Georgia, Tbilisi Rustavi, Qutaisi, Zestafoni and Batumi, are presented. Fuel consumption and emissions from the transport sector in Tbilisi have been investigated. Using mathematical simulation, the concentration distribution of harmful substances, NOx, at Rustavely Avenue, the crossroad of King David Agmashenebeli and King Tamar Avenue, where traffic is congested, have been studied. Some results from the numerical calculations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrian G, Fiedler F (1991) Simulation of un-stationary wind and temperature fields over complex terrain and comparison with observations. Int J Beitr Phys Atmos 64:27–48

    Google Scholar 

  2. Baklanov A, Rassmusen A (2006) Integrated systems for forecasting urban meteorology, air pollution and population exposure, FUMAPEX:, EVK4-CT-2002-00097, Final report, including 3rd periodic report and 6th management report and a final T.I.P., Copenhagen, http://fumapex.dmi.dk. Accessed 5 Sep 2012

  3. Beglarashvili N (2011) Quantitative measure of GHG emissions by mini-buses in Tbilisi. Trans Inst Hydrometeorol Georgian Tech Univ 117:140–142 (In Georgian)

    Google Scholar 

  4. Berkovich R, Hertel O, Niels N, Michelsen J (1994) Modeling air pollution from traffic in urban areas. In: Proceedings of IMA conference on flow and dispersion through groups of obstacles, University of Cambridge,Cambridge, pp 28–30

    Google Scholar 

  5. Berlyand ME (1975) Predication and regulation of air pollution. Gidrometeoisdat, Leningrad, p 387

    Google Scholar 

  6. Berlyand ME, GenikhovichI G IV, Gracheva I, Onikul K (1985) Physical and meteorological principles of establishing maximum permissible emissions into the atmosphere. J Main Geophys Obs 495:3–23

    CAS  Google Scholar 

  7. Brown M, Arya JSP, Snyder WH (1993) Vertical dispersion from surface and elevated releases: an investigation of non-Gaussian plume model. J Appl Meteor 32:490–504

    Article  Google Scholar 

  8. Burenin N, Onikul N, Solomatina I (1999) On estimation of motor-transport emissions in to the atmosphere and air pollution near highways. J Main Geophys Obs 436:102–110 (In Russian)

    Google Scholar 

  9. Carmichael GR, Peters LK, Kitada TA (1986) Second generation model for regional scale transport/chemistry/deposition. Int J Atmos Environ 20:173–188

    Article  CAS  Google Scholar 

  10. Carmichael GR, Peters LK, Saylor RD (1990) The STEM-II regional scale acid deposition and photochemical oxidant model – I. An overview of model development and applications. Int J Atmos Environ 25:2077–2090

    Article  Google Scholar 

  11. Chang J, Brost R, Isaksen I, Madronich S, Middleton P, Stokwell W, Walcek C (1987) A three-dimensional Eulerian acid deposition model: physical concepts and formulation. Int J Geophys Res 12:14681–14777

    Article  Google Scholar 

  12. Davitashvili T (2007) Oil infiltration into soil: problems of the Georgian section of TRACECA and their numerical treatment. In: Ebel A, Davitashvili T (eds) Air water and soil quality modelling for risk and impact assessment. Springer, Dordrecht, pp 247–258

    Chapter  Google Scholar 

  13. Davitashvili T, Sichinava J (2002) Mathematical modeling of Tbilisi air pollution. Rep Enlarged Sessions VIAM 17:38–44

    Google Scholar 

  14. Doran JC, Fast JD, Barnard JC, Laskin A, Desyaterik Y, Gilles MK, Hopkins RJ (2008) Applications of Lagrangian dispersion modeling to the analysis of changes in the specific absorption of elemental carbon. Atmos Chem Phys 8(5):1377–1389

    Article  CAS  Google Scholar 

  15. Elliot WP (1961) The vertical diffusion of gas from continuous source. Int J Air Water Pollut 4:33–46

    Google Scholar 

  16. Fast JD (2003) Forecasts of valley circulations using the terrain-following and step-mountain vertical coordinates in the Meso Eta model. Weather and Forecasting 18(6):1192–1206

    Article  Google Scholar 

  17. Fay B, Glaab D, Jacobsen I, Scrodin R (1995) Evaluation of Eulerian and Lagranjian atmospheric transport models of the Deutscher Wetterdients using anatex surface tracer data. Atmos Environ 29:2485–2497

    Article  CAS  Google Scholar 

  18. GEO-Cities Tbilisi: an integrated environment assessment of state and trends for Georgia’s capital city (2011) 124. http://geocities-tbilisi.ge/failebi/5414-Introduction.pdf

  19. Grossman-Clarke S, Liu Y, Zehnder JA, Fast JD (2008) Simulations of the urban planetary boundary layer in an arid metropolitan area. J Appl Meteorol Climatol 47(3):752–768

    Article  Google Scholar 

  20. Gunia G (1992) Meteorological problems of urban area air pollution. Hydromet Press, 193 (in Russian)

    Google Scholar 

  21. Hertel O, Bekrovich R (1989) Modelling pollution from traffic in a street canyon, evaluation data and model development. DMU Luft A-136: 27

    Google Scholar 

  22. Hertel O, Bekrovich R, Larssen S (1990) The operational street pollution model (OSPM), In: 18th International meeting of NATO/CEMS on air pollution modelling and its application, Vancouver, Canada, pp 741–749

    Google Scholar 

  23. Huang CH, Drake RL (1997) Validation of Gaussian non-Gaussian diffusion models for a point source. In: Proceedings of international conference on applications of air pollution, Salt Lake City, pp 299–303

    Google Scholar 

  24. Hung-Lung Allen H (2005) Numerical weather prediction utilization of cloud affected radiances – progress so far. WSEAS Trans Environ Dev 1(1):124–132

    Google Scholar 

  25. Jonson WB, Ludwig FL, Dabbert WF, Allen RI (1973) An urban diffusion simulation model for carbon monoxide. J Air Pollut Control Assess 23:490–498

    Article  Google Scholar 

  26. Liousse CJ, Penner E, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A three-dimensional model study of carbonaceous aerosols. J Geophys Res 101:19411–19432

    Article  CAS  Google Scholar 

  27. Michael I, Brown MJ, Arya SP (1997) Plume descriptors derived from a Non-Gaussian concentration model. Atmos Environ 31(2):183–189

    Article  Google Scholar 

  28. MoEPoG-(Ministry of Environment Protection of Georgia), State of the Environment Report for Georgia 2007–2009, Tbilisi 2011. http://soegeorgia.blogspot.com/p/english-version.html. Accessed 5 Sep 2012

  29. MoH (Ministry of Labour, Health and Social affairs of Georgia). http://www.moh.gov.ge/

  30. NSoG-(National Statistics Office of Georgia) (2009). http://www.geostat.ge/. Accessed 5 Sep 2012

  31. Ortega S, Solar MR, Benetto J, Pino D (2004) Evaluation of two ozone air quality modeling systems. Atmos Chem Phys 4:1389–1398

    Article  CAS  Google Scholar 

  32. Shokouhi MA (2005) New town planning and imbalanced development: the case of Stevenage. WSEAS Trans Environ Dev 1(1):79–87

    Google Scholar 

  33. Shotadze M (2003) Air pollution in Tbilisi – priority national problem. Georgian Center for Strategic Research and Development, Tbilisi, Georgia, vol 80, p 119

    Google Scholar 

  34. Sobottka H, Leisen P (1980) Vehicle exhaust gas emission in city streets abd model aspects. In: IMA conference on modelling of dispersion on transport pollution, Southend on Sea, England, pp 34–42

    Google Scholar 

  35. Sportisse B (2001) Box models versus Eulerian models in air pollution modeling. Atmos Environ 35:175–178

    Article  Google Scholar 

  36. TCH-(Tbilisi City Hall) (2009) Tbilisi millennium development report, p 213

    Google Scholar 

  37. UNDP (2009) Second National Communication to the UNFCCC of the Ministry of Environment of Georgia, Tbilisi

    Google Scholar 

  38. Veltishcheva N (1975) Modeling of pollution of an urban atmosphere from a series of continuous elevated sources. Int J Meteorol Hydrol 9(in Russian):52–58

    Google Scholar 

  39. Walton JJ, Mac-Cracken MC, Ghan SJ (1998) A global-scale Lagrangian trace species model of transport, transformation, and removal processes. J Geophys Res 93:8339–8354

    Article  Google Scholar 

  40. Whiteman CD, Zhong S, Bian X, Fast J, Doran J (2000) Boundary layer evolution and regional-scale diurnal circulations over the Mexico Basin and Mexican Plateau. J Geophys Res D (Atmos) 105(D8):10081–10102

    Article  Google Scholar 

  41. Ye Z, Li Z, Mohamadian H (2007) Engine performance improvement on fuel economy and exhaust emissions using lean burn control technologies. WSEAS Trans Environ Dev 4(3):45–56

    Google Scholar 

  42. Zhang Y, Sunwoo Y, Carmichael G, Kotamarthi V (1994) Photochemical oxidant processes in the presence of dust: an evaluation of the impact of dust on particulate nitrate and ozone formation. J Appl Meteorol 33:813–824

    Article  Google Scholar 

  43. Zlatev Z (1989) The Danish Eulerian model. In: Environmental pollution monitoring programme, WMD, Geneva, Switzerland, vol 65, pp 30–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teimuraz Davitashvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Davitashvili, T. (2013). Atmosphere Pollution Problems in Urban Areas on the Territory of Georgia. In: Barnes, I., Rudziński, K. (eds) Disposal of Dangerous Chemicals in Urban Areas and Mega Cities. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5034-0_24

Download citation

Publish with us

Policies and ethics