Skip to main content

Novel Targeted Therapeutics for Acute Myeloid Leukemia

  • Chapter
  • First Online:
Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics

Part of the book series: Cancer Growth and Progression ((CAGP,volume 14))

  • 1294 Accesses

Abstract

Acute myeloid leukemia (AML) is a heterogenous group of malignant hematopoietic disorders characterized by uncontrolled proliferation and accumulation of clonal immature myeloid cells in the bone marrow, ultimately leading to hematopoietic failure. Despite some advances in therapy for patients with adult acute myeloid leukemia, the overall prognosis remains dismal. The backbone of induction therapy has not changed in decades, and usually includes a combination of an anthracycline and cytarabine. While the complete remission (CR) rate after induction is approximately 60–80 % for patients younger than the age of 60, the overall cure rate remains only 25–30 %, owing to a high rate of relapse despite postremission therapy. Outcomes are even worse in older patients, patients who evolve from previous myelodysplastic syndromes, and patients whose disease is linked to environmental and occupational exposures (Appelbaum et al. 2006; Kantarjian et al. 2006a). These patients frequently relapse, and the remission duration is generally short. A minority of patients are eligible for allogeneic hematopoietic stem cell transplant (HSCT), which offers the possibility of cure but is associated with high morbidity and mortality, even in highly selected populations (Yanada et al. 2005a; Cornelissen et al. 2007; Koreth et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ades L, Sanz MA, Chevret S et al (2008) Treatment of newly diagnosed acute promyelocytic leukemia (APL): a comparison of French-Belgian-Swiss and PETHEMA results. Blood 111:1078–1084

    Article  PubMed  CAS  Google Scholar 

  • Agrawal S, Hofmann W-K, Tidow N et al (2007) The C/EBP{delta} tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood 109:3895–3905

    Article  PubMed  CAS  Google Scholar 

  • Alcalay M, Tiacci E, Bergomas R et al (2005) Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc  +  AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 106:899–902

    Article  PubMed  CAS  Google Scholar 

  • Amadori S, Suciu S, Stasi R et al (2005) Gemtuzumab ozogamicin (Mylotarg) as single-agent treatment for frail patients 61 years of age and older with acute myeloid leukemia: final results of AML-15B, a phase 2 study of the European organisation for research and treatment of cancer and Gruppo Italiano Malattie Ematologiche dell’Adulto leukemia groups. Leukemia 19:1768–1773

    Article  PubMed  CAS  Google Scholar 

  • An WG, Schulte TW, Neckers LM (2000) The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 11:355–360

    PubMed  CAS  Google Scholar 

  • Andreeff M, Ruvolo V, Gadgil S et al (2008) HOX expression patterns identify a common signature for favorable AML. Leukemia 22:2041–2047

    Article  PubMed  CAS  Google Scholar 

  • Appelbaum FR, Gundacker H, Head DR et al (2006) Age and acute myeloid leukemia. Blood 107:3481–3485

    Article  PubMed  CAS  Google Scholar 

  • Attar EC, De Angelo DJ, Supko JG et al (2008) Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clin Cancer Res 14:1446–1454

    Article  PubMed  CAS  Google Scholar 

  • Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S (2006) Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107:3847–3853

    Article  PubMed  CAS  Google Scholar 

  • Baer MR, George SL, Dodge RK et al (2002) Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: cancer and leukemia group B study 9720. Blood 100:1224–1232

    PubMed  CAS  Google Scholar 

  • Barry EV, Clark JJ, Cools J, Roesel J, Gilliland DG (2007) Uniform sensitivity of FLT3 activation loop mutants to the tyrosine kinase inhibitor midostaurin. Blood 110:4476–4479

    Article  PubMed  CAS  Google Scholar 

  • Belli BA, Dao A, Bhagwat S, Wierenga W, Armstrong RC (2009) AC220, a potent and specific FLT3 inhibitor, enhances the cytotoxic effects of chemotherapeutic agents in cell culture and in mouse tumor xenografts. Blood (ASH Annual Meeting Abstracts) 114:2052

    Google Scholar 

  • Black JH, McCubrey JA, Willingham MC, Ramage J, Hogge DE, Frankel AE (2003) Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 17:155–159

    Article  PubMed  CAS  Google Scholar 

  • Blair A, Hogge DE, Sutherland HJ (1998) Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR. Blood 92:4325–4335

    PubMed  CAS  Google Scholar 

  • Blum W, Klisovic RB, Hackanson B et al (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25:3884–3891

    Article  PubMed  CAS  Google Scholar 

  • Boland MP, Foster SJ, O’Neill LA (1997) Daunorubicin activates NFkappaB and induces kappaB-dependent gene expression in HL-60 promyelocytic and Jurkat T lymphoma cells. J Biol Chem 272:12952–12960

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  • Borthakur G, Garcia-Manero G, Estrov Z et al (2009) Phase 2 study of decitabine and gemtuzumab ozogamicin in acute myelogenous leukemia and high-risk myelodysplastic syndrome- outcome in previously untreated patients. ASH Annual Meeting Abstracts 114:1053

    Google Scholar 

  • Borthakur G, Huang X, Kantarjian H et al (2010) Report of a phase 1/2 study of a combination of azacitidine and cytarabine in acute myelogenous leukemia and high-risk myelodysplastic syndromes. Leuk Lymphoma 51:73–78

    Article  PubMed  CAS  Google Scholar 

  • Bowen DT, Frew ME, Hills R et al (2005) RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 106:2113–2119

    Article  PubMed  CAS  Google Scholar 

  • Brandwein JM, Leber BF, Howson-Jan K et al (2009) A phase I study of tipifarnib combined with conventional induction and consolidation therapy for previously untreated patients with acute myeloid leukemia aged 60 years and over. Leukemia 23:631–634

    Article  PubMed  CAS  Google Scholar 

  • Braun T, Fenaux P (2008) Farnesyltransferase inhibitors and their potential role in therapy for myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol 141:576–586

    Article  PubMed  CAS  Google Scholar 

  • Bross PF, Beitz J, Chen G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496

    PubMed  CAS  Google Scholar 

  • Byrd JC, Marcucci G, Parthun MR et al (2005) A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 105:959–967

    Article  PubMed  CAS  Google Scholar 

  • Callens C, Chevret S, Cayuela JM et al (2005) Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia 19:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Cameron EE, Bachman KE, Myohanen S et al (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  PubMed  CAS  Google Scholar 

  • Cashen AF (2009) Decitabine can induce complete cytogenetic responses when used as initial therapy in older AML patients. ASH Annual Meeting Abstracts 114:4123

    Google Scholar 

  • Cashen AF, Schiller GJ, O’Donnell MR, DiPersio JF (2010) Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol 28:556–561

    Article  PubMed  CAS  Google Scholar 

  • Castaigne S, Chomienne C, Daniel M et al (1990) All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results [see comments]. Blood 76:1704–1709

    PubMed  CAS  Google Scholar 

  • Chan WI, Huntly BJ (2008) Leukemia stem cells in acute myeloid leukemia. Semin Oncol 35:326–335

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jones D, Medeiros LJ, Luthra R, Lin P (2005) Acute myeloid leukaemia with FLT3 gene mutations of both internal tandem duplication and point mutation type. Br J Haematol 130:726–728

    Article  PubMed  CAS  Google Scholar 

  • Chomienne C, Balitrand N, Ballerini P, Castaigne S, de Thé H, Degos L (1991) All-trans retinoic acid modulates the retinoic acid receptor-alpha in promyelocytic cells. J Clin Invest 88:2150–2154

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S, Seropian S, Marks PW (2009) Decitabine combined with fractionated gemtuzumab ozogamicin therapy in patients with relapsed or refractory acute myeloid leukemia. Am J Hematol 84:599–600

    Article  PubMed  Google Scholar 

  • Colado E, Alvarez-Fernandez S, Maiso P et al (2008) The effect of the proteasome inhibitor bortezomib on acute myeloid leukemia cells and drug resistance associated with the CD34+ immature phenotype. Haematologica 93:57–66

    Article  PubMed  CAS  Google Scholar 

  • Conticello C, Adamo L, Vicari L et al (2008) Antitumor activity of bortezomib alone and in combination with TRAIL in human acute myeloid leukemia. Acta Haematol 120:19–30

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen JJ, van Putten WL, Verdonck LF et al (2007) Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood 109:3658–3666

    Article  PubMed  CAS  Google Scholar 

  • Cortes J, Thomas D, Koller C et al (2004) Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 10:3371–3376

    Article  PubMed  CAS  Google Scholar 

  • Cortes J, Foran J, Ghirdaladze D et al (2009) AC220, a potent, selective, second generation FLT3 Receptor Tyrosine Kinase (RTK) Inhibitor, in a First-in-Human (FIH) phase 1 AML study. Blood (ASH Annual Meeting Abstracts) 114:636

    Google Scholar 

  • Cripe LD, Uno H, Paietta EM et al (2010) Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled, trial of the Eastern Cooperative Oncology Group (ECOG 3999). Blood 116(20):4077–4085

    Article  PubMed  CAS  Google Scholar 

  • Di Croce L, Raker VA, Corsaro M et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1082

    Article  PubMed  Google Scholar 

  • Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  PubMed  CAS  Google Scholar 

  • Drexler HG (1996) Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 10:588–599

    PubMed  CAS  Google Scholar 

  • End DW (1999) Farnesyl protein transferase inhibitors and other therapies targeting the Ras signal transduction pathway. Invest New Drugs 17:241–258

    Article  PubMed  CAS  Google Scholar 

  • End DW, Smets G, Todd AV et al (2001) Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61:131–137

    PubMed  CAS  Google Scholar 

  • Fardel O, Lecureur V, Daval S, Corlu A, Guillouzo A (1997) Up-regulation of P-glycoprotein expression in Rat liver cells by acute doxorubicin treatment. Eur J Biochem 246:186–192

    Article  PubMed  CAS  Google Scholar 

  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10:223–232

    Article  PubMed  CAS  Google Scholar 

  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al (2010) Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 28:562–569

    Article  PubMed  CAS  Google Scholar 

  • Feuring-Buske M, Frankel AE, Alexander RL, Gerhard B, Hogge DE (2002) A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res 62:1730–1736

    PubMed  CAS  Google Scholar 

  • Fialkow PJ, Singer JW, Adamson JW et al (1981) Acute nonlymphocytic leukemia: heterogeneity of stem cell origin. Blood 57:1068–1073

    PubMed  CAS  Google Scholar 

  • Fialkow PJ, Singer JW, Raskind WH et al (1987) Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med 317:468–473

    Article  PubMed  CAS  Google Scholar 

  • Flandrin P, Guyotat D, Duval A et al (2008) Significance of heat-shock protein (HSP) 90 expression in acute myeloid leukemia cells. Cell Stress Chaperones 13:357–364

    Article  PubMed  CAS  Google Scholar 

  • Frankel AE, McCubrey JA, Miller MS et al (2000) Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 14:576–585

    Article  PubMed  CAS  Google Scholar 

  • Frankel A, Liu JS, Rizzieri D, Hogge D (2008) Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma 49:543–553

    Article  PubMed  CAS  Google Scholar 

  • Frohling S, Schlenk RF, Breitruck J et al (2002) Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML study group Ulm. Blood 100:4372–4380

    Article  PubMed  CAS  Google Scholar 

  • Frohling S, Scholl C, Bansal D, Huntly BJ (2007) HOX gene regulation in acute myeloid leukemia: CDX marks the spot? Cell Cycle 6:2241–2245

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B et al (2006) Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 108:3271–3279

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Yang H, Bueso-Ramos C et al (2008a) Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111:1060–1066

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Assouline S, Cortes J et al (2008b) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112:981–989

    Article  PubMed  CAS  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA (1998) Aberrant Recruitment of the Nuclear Receptor Corepressor-Histone Deacetylase Complex by the Acute Myeloid Leukemia Fusion Partner ETO. Mol Cell Biol 18:7185–7191

    PubMed  CAS  Google Scholar 

  • Gerrard G, Payne E, Baker RJ et al (2004) Clinical effects and P-glycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubicin and cytarabine. Haematologica 89:782–790

    PubMed  CAS  Google Scholar 

  • Gil L, Styczynski J, Dytfeld D et al (2007) Activity of bortezomib in adult de novo and relapsed acute myeloid leukemia. Anticancer Res 27:4021–4025

    PubMed  CAS  Google Scholar 

  • Giles FJ, Kantarjian HM, Kornblau SM et al (2001) Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 92:406–413

    Article  PubMed  CAS  Google Scholar 

  • Goffin J, Eisenhauer E (2002) DNA methyltransferase inhibitors‒state of the art. Ann Oncol 13:1699–1716

    Article  PubMed  CAS  Google Scholar 

  • Gojo I, Jiemjit A, Trepel JB et al (2007) Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109:2781–2790

    PubMed  CAS  Google Scholar 

  • Gore SD, Baylin S, Sugar E et al (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66:6361–6369

    Article  PubMed  CAS  Google Scholar 

  • Greenberg PL, Lee SJ, Advani R et al (2004) Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 22:1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Jordan CT (2004) Considerations for targeting malignant stem cells in leukemia. Cancer Control 11:97–104

    PubMed  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D et al (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98:2301–2307

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Swiderski CF, Howard DS et al (2002) Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A 99:16220–16225

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Rossi RM, Karnischky L et al (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105:4163–4169

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Rossi RM, Neelakantan S et al (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110:4427–4435

    Article  PubMed  CAS  Google Scholar 

  • Harousseau JL, Lancet JE, Reiffers J et al (2007) A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 109:5151–5156

    Article  PubMed  CAS  Google Scholar 

  • Harousseau JL, Martinelli G, Jedrzejczak WW et al (2009) A randomized phase 3 study of tipifarnib compared with best supportive care, including hydroxyurea, in the treatment of newly diagnosed acute myeloid leukemia in patients 70 years or older. Blood 114:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Hirsch-Ernst KI, Ziemann C, Foth H, Kozian D, Schmitz-Salue C, Kahl GF (1998) Induction of mdr1b mRNA and P-glycoprotein expression by tumor necrosis factor alpha in primary rat hepatocyte cultures. J Cell Physiol 176:506–515

    Article  PubMed  CAS  Google Scholar 

  • Hochhaus A, O’Brien SG, Guilhot F et al (2009) Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Horton TM, Gannavarapu A, Blaney SM, D’Argenio DZ, Plon SE, Berg SL (2006) Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 58:13–23

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Ye Y, Chen S et al (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    PubMed  CAS  Google Scholar 

  • Illmer T, Thiede C, Fredersdorf A et al (2005) Activation of the RAS pathway is predictive for a chemosensitive phenotype of acute myelogenous leukemia blasts. Clin Cancer Res 11:3217–3224

    Article  PubMed  CAS  Google Scholar 

  • Issa J-PJ, Zehnbauer BA, Kaufmann SH, Biel MA, Baylin SB (1997) HIC1 Hypermethylation is a late event in hematopoietic neoplasms. Cancer Res 57:1678–1681

    PubMed  CAS  Google Scholar 

  • Issa JP, Garcia-Manero G, Giles FJ et al (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT (2007) The leukemic stem cell. Best Pract Res Clin Haematol 20:13–18

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT, Upchurch D, Szilvassy SJ et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14:1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Kanamaru A, Takemoto Y, Tanimoto M et al (1995) All-trans retinoic acid for the treatment of newly diagnosed acute promyelocytic leukemia. Japan Adult Leukemia Study Group [see comments]. Blood 85:1202–1206

    PubMed  CAS  Google Scholar 

  • Kantarjian H, O’Brien S, Cortes J et al (2006a) Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 106:1090–1098

    Article  PubMed  Google Scholar 

  • Kantarjian H, Issa J-PJ, Rosenfeld CS et al (2006b) Decitabine improves patient outcomes in myelodysplastic syndromes. In: Wiley Subscription Services, Inc., A Wiley Company, pp 1794–803

    Google Scholar 

  • Kantarjian H, Oki Y, Garcia-Manero G et al (2007) Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109:52–57

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian H, Shah NP, Hochhaus A et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362:2260–2270

    Article  PubMed  CAS  Google Scholar 

  • Karp JE, Lancet JE, Kaufmann SH et al (2001) Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 97:3361–3369

    Article  PubMed  CAS  Google Scholar 

  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472

    Article  PubMed  CAS  Google Scholar 

  • Kim HP, Frankel AE, Hogge DE (2010) A diphtheria toxin interleukin-3 fusion protein synergizes with tyrosine kinase inhibitors in killing leukemic progenitors from BCR/ABL positive acute leukemia. Leuk Res 34:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Kiyoi H, Naoe T, Nakano Y et al (1999) Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 93:3074–3080

    PubMed  CAS  Google Scholar 

  • Klisovic MI, Maghraby EA, Parthun MR et al (2003) Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1//ETO-positive leukemic cells. Leukemia 17:350–358

    Article  PubMed  CAS  Google Scholar 

  • Knapper S (2007) FLT3 inhibition in acute myeloid leukaemia. Br J Haematol 138:687–699

    Article  PubMed  CAS  Google Scholar 

  • Knapper S, Burnett AK, Littlewood T et al (2006) A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 108:3262–3270

    Article  PubMed  CAS  Google Scholar 

  • Kolitz JE, George SL, Marcucci G et al (2010) P-glycoprotein inhibition using valspodar (PSC-833) does not improve outcomes for patients under age 60 years with newly diagnosed acute myeloid leukemia: cancer and leukemia group B study 19808. Blood 116(9):1413–1421

    Article  PubMed  CAS  Google Scholar 

  • Konopleva MY, Jordan CT (2011) Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 29:591–599

    Article  PubMed  Google Scholar 

  • Koreth J, Schlenk R, Kopecky KJ et al (2009) Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA 301:2349–2361

    Article  PubMed  CAS  Google Scholar 

  • Kottaridis PD, Gale RE, Frew ME et al (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the united kingdom medical research council AML 10 and 12 trials. Blood 98:1752–1759

    Article  PubMed  CAS  Google Scholar 

  • Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR (2009) Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 29:576–588

    Article  PubMed  CAS  Google Scholar 

  • Lancet JE, Karp JE (2003) Farnesyltransferase inhibitors in hematologic malignancies: new horizons in therapy. Blood 102:3880–3889

    Article  PubMed  CAS  Google Scholar 

  • Lancet JE, Gojo I, Gotlib J et al (2007) A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 109:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Lancet JE, Baer MR, Duran GE et al (2009) A phase I trial of continuous infusion of the multidrug resistance inhibitor zosuquidar with daunorubicin and cytarabine in acute myeloid leukemia. Leuk Res 33:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Lancet JE, Gojo I, Burton M et al (2010) Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 24:699–705

    Article  PubMed  CAS  Google Scholar 

  • Larson RA, Boogaerts M, Estey E et al (2002) Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 16:1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Larson RA, Sievers EL, Stadtmauer EA et al (2005) Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104:1442–1452

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Jaffrezou JP (2001) Signaling pathways activated by daunorubicin. Blood 98:913–924

    Article  PubMed  CAS  Google Scholar 

  • Legras S, Gunthert U, Stauder R et al (1998) A strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia. Blood 91:3401–3413

    PubMed  CAS  Google Scholar 

  • Lehne G, Sorensen D, Tjonnfjord G et al (2002) The cyclosporin PSC 833 increases survival and delays engraftment of human multidrug-resistant leukemia cells in xenotransplanted NOD-SCID mice. Leukemia 16:2388–2394

    Article  PubMed  CAS  Google Scholar 

  • Leith CP, Kopecky KJ, Godwin J et al (1997) Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A southwest oncology group study. Blood 89:3323–3329

    PubMed  CAS  Google Scholar 

  • Leith CP, Kopecky KJ, Chen IM et al (1999) Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a southwest oncology group study. Blood 94:1086–1099

    PubMed  CAS  Google Scholar 

  • Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Allebach J, Tse KF et al (2002) A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99:3885–3891

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Pham R, Smith BD, Small D (2004) In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 104:1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Levis M, Sato T, Murphy K, Rajkhowa T, Pratz K (2009) FLT3 mutant to wild type allelic ratio and clinical status are predictive of response to FLT3 inhibitors in AML. ASH Annual Meeting Abstracts 114:1716

    Google Scholar 

  • Levis M, Ravandi F, Wang ES et al (2011) Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 117:3294–3301

    Article  PubMed  CAS  Google Scholar 

  • Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Evans RM (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814

    Article  PubMed  CAS  Google Scholar 

  • List AF, Kopecky KJ, Willman CL et al (2001) Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a southwest oncology group study. Blood 98:3212–3220

    Article  PubMed  CAS  Google Scholar 

  • Liu Yin JA, Wheatley K, Rees JK, Burnett AK (2001) Comparison of ‘sequential’ versus ‘standard’ chemotherapy as re-induction treatment, with or without cyclosporine, in refractory/relapsed acute myeloid leukaemia (AML): results of the UK medical research council AML-R trial. Br J Haematol 113:713–726

    Article  PubMed  CAS  Google Scholar 

  • Liu TF, Urieto JO, Moore JE et al (2004) Diphtheria toxin fused to variant interleukin-3 provides enhanced binding to the interleukin-3 receptor and more potent leukemia cell cytotoxicity. Exp Hematol 32:277–281

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Shen T, Huynh L et al (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 65:1277–1284

    Article  PubMed  CAS  Google Scholar 

  • Lowenberg B, Beck J, Graux C et al (2010) Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more: results of a multicenter phase 3 study. Blood 115:2586–2591

    Article  PubMed  CAS  Google Scholar 

  • Lubbert M, Ruter BH, Schmid M et al (2009) Low-Dose Decitabine (DAC), alone or in combination with All-Trans Retinoic Acid (ATRA), is an active first-line treatment in older AML patients of all cytogenetic risk groups: final results of the FR00331 multicenter phase II study. ASH Annual Meeting Abstracts 114:4141

    Google Scholar 

  • Mahadevan D, List AF (2004) Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies. Blood 104:1940–1951

    Article  PubMed  CAS  Google Scholar 

  • Majeti R, Chao MP, Alizadeh AA et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    Article  PubMed  CAS  Google Scholar 

  • Martelli AM, Nyakern M, Tabellini G et al (2006) Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20:911–928

    Article  PubMed  CAS  Google Scholar 

  • Martelli AM, Evangelisti C, Chiarini F, McCubrey JA (2010) The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 1:89–103

    PubMed  Google Scholar 

  • Mateos M-V, Martinez R, Brunet S et al (2009) A phase I/II, national, multicenter, open label study of bortezomib (Velcade) and fludarabine, cytarabine and idarubicin (Flag-Ida) (V-Flag-Ida) in Pts with relapsed and/or refractory Acute Myeloblastic Leukemia (AML). Blood (ASH Annual Meeting Abstracts) 114:4140

    Google Scholar 

  • Matondo M, Bousquet-Dubouch MP, Gallay N et al (2010) Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: a correlation with the proteasome status. Leuk Res 34:498–506

    Article  PubMed  CAS  Google Scholar 

  • Matsouka P, Pagoni M, Zikos P et al (2006) Addition of cyclosporin-A to chemotherapy in secondary (post-MDS) AML in the elderly. A multicenter randomized trial of the Leukemia Working Group of the Hellenic Society of Hematology. Ann Hematol 85:250–256

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Takemoto N, Sato T et al (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9:1158–1165

    Article  PubMed  CAS  Google Scholar 

  • Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE (2007) FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 110:1262–1270

    Article  PubMed  CAS  Google Scholar 

  • Mead AJ, Gale RE, Kottaridis PD, Matsuda S, Khwaja A, Linch DC (2008) Acute myeloid leukaemia blast cells with a tyrosine kinase domain mutation of FLT3 are less sensitive to lestaurtinib than those with a FLT3 internal tandem duplication. Br J Haematol 141:454–460

    Article  PubMed  CAS  Google Scholar 

  • Melki JR, Vincent PC, Brown RD, Clark SJ (2000) Hypermethylation of E-cadherin in leukemia. Blood 95:3208–3213

    PubMed  CAS  Google Scholar 

  • Meshinchi S, Appelbaum FR (2009) Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res 15:4263–4269

    Article  PubMed  CAS  Google Scholar 

  • Meshinchi S, Alonzo TA, Stirewalt DL et al (2006) Clinical implications of FLT3 mutations in pediatric AML. Blood 108:3654–3661

    Article  PubMed  CAS  Google Scholar 

  • Metzelder S, Scholl S, Matthias K et al (2009a) Compassionate use of sorafenib in relapsed and refractory Flt3-ITD positive acute myeloid leukemia. Blood (ASH Annual Meeting Abstracts) 114:2060

    Google Scholar 

  • Metzelder S, Wang Y, Wollmer E et al (2009b) Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 113:6567–6571

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Rubsamen D, Slany R et al (2009) Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy. PLoS One 4:e7768

    Article  PubMed  CAS  Google Scholar 

  • Minami YF, Kiyoi H, Kiyoi HF, Yamamoto Y, Yamamoto YF, Yamamoto K et al (2002) Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia 16:1535–1540

    Article  PubMed  CAS  Google Scholar 

  • Misaghian N, Ligresti G, Steelman LS et al (2009) Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 23:25–42

    Article  PubMed  CAS  Google Scholar 

  • Moreno I, Martin G, Bolufer P et al (2003) Incidence and prognostic value of FLT3 internal tandem duplication and D835 mutations in acute myeloid leukemia. Haematologica 88:19–24

    PubMed  CAS  Google Scholar 

  • Mori Y, Kiyoi H, Ishikawa Y, Naoe T (2009) FL-dependent wild-type FLT3 signals reduce the inhibitory effects of FLT3 inhibitors on wild-type and mutant FLT3 co-expressing cells. ASH Annual Meeting Abstracts 2009;114:2067

    Google Scholar 

  • Morrison SJ, Prowse KR, Ho P, Weissman IL (1995) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5:207–216

    Article  Google Scholar 

  • Muller-Tidow C, Steffen B, Cauvet T et al (2004) Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 24:2890–2904

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309

    Article  PubMed  CAS  Google Scholar 

  • Nakao M, Yokota S, Iwai T et al (1996) Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10:1911–1918

    PubMed  CAS  Google Scholar 

  • Nasr R, Guillemin M-C, Ferhi O et al (2008) Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med 14:1333–1342

    Article  PubMed  CAS  Google Scholar 

  • Neubauer A, Maharry K, Mrozek K et al (2008) Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a cancer and leukemia group B study. J Clin Oncol 26:4603–4609

    Article  PubMed  CAS  Google Scholar 

  • O’Brien SG, Guilhot F, Larson RA et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004

    Article  PubMed  Google Scholar 

  • Odgerel T, Kikuchi J, Wada T et al (2008) The FLT3 inhibitor PKC412 exerts differential cell cycle effects on leukemic cells depending on the presence of FLT3 mutations. Oncogene 27:3102–3110

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y (2006) Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 8:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306:349–356

    Article  PubMed  CAS  Google Scholar 

  • Ozeki K, Kiyoi H, Hirose Y et al (2004) Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 103:1901–1908

    Article  PubMed  CAS  Google Scholar 

  • Palmqvist L, Pineault N, Wasslavik C, Humphries RK (2007) Candidate genes for expansion and transformation of hematopoietic stem cells by NUP98-HOX fusion genes. PLoS One 2:e768

    Article  PubMed  CAS  Google Scholar 

  • Park IK, Qian D, Kiel M et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    Article  PubMed  CAS  Google Scholar 

  • Patel NM, Nozaki S, Shortle NH et al (2000) Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene 19:4159–4169

    Article  PubMed  CAS  Google Scholar 

  • Pearce DJ, Taussig D, Zibara K et al (2006) AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Petersdorf S, Kopecky K, Stuart RK et al (2009) Preliminary results of southwest oncology group study S0106: an international intergroup phase 3 randomized trial comparing the addition of gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia. ASH Annual Meeting Abstracts 114:790

    Google Scholar 

  • Pigneux A, Mahon FX, Moreau-Gaudry F et al (2007) Proteasome inhibition specifically sensitizes leukemic cells to anthracyclin-induced apoptosis through the accumulation of Bim and Bax pro-apoptotic proteins. Cancer Biol Ther 6:603–611

    Article  PubMed  CAS  Google Scholar 

  • Pineault N, Helgason CD, Lawrence HJ, Humphries RK (2002) Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30:49–57

    Article  PubMed  CAS  Google Scholar 

  • Plass C, Oakes C, Blum W, Marcucci G (2008) Epigenetics in acute myeloid leukemia. Semin Oncol 35:378–387

    Article  PubMed  CAS  Google Scholar 

  • Raaphorst FM (2003) Self-renewal of hematopoietic and leukemic stem cells: a central role for the Polycomb-group gene Bmi-1. Trends Immunol 24:522–524

    Article  PubMed  CAS  Google Scholar 

  • Raelson J, Nervi C, Rosenauer A et al (1996) The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 88:2826–2832

    PubMed  CAS  Google Scholar 

  • Raponi M, Lancet JE, Fan H et al (2008) A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood 111:2589–2596

    Article  PubMed  CAS  Google Scholar 

  • Ravandi F, Estey E, Jones D et al (2009) Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. J Clin Oncol 27:504–510

    Article  PubMed  CAS  Google Scholar 

  • Ravandi F, Kantarjian H, Faderl S et al (2010a) Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. Leuk Res 34:752–756

    Article  PubMed  CAS  Google Scholar 

  • Ravandi F, Cortes JE, Jones D et al (2010b) Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 28:1856–1862

    Article  PubMed  CAS  Google Scholar 

  • Rawat VP, Thoene S, Naidu VM et al (2008) Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia. Blood 111:309–319

    Article  PubMed  CAS  Google Scholar 

  • Raza A, Mehdi M, Mumtaz M, Ali F, Lascher S, Galili N (2008) Combination of 5-azacytidine and thalidomide for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Cancer 113:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Riccioni R, Senese M, Diverio D et al (2007) M4 and M5 acute myeloid leukaemias display a high sensitivity to Bortezomib-mediated apoptosis. Br J Haematol 139:194–205

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Hideshima T, Mitsiades C, Anderson K (2004) Proteasome inhibition in hematologic malignancies. Ann Med 36:304–314

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  PubMed  CAS  Google Scholar 

  • Ritter M, Kim TD, Lisske P, Thiede C, Schaich M, Neubauer A (2004) Prognostic significance of N-RAS and K-RAS mutations in 232 patients with acute myeloid leukemia. Haematologica 89:1397–1399

    PubMed  CAS  Google Scholar 

  • Roberts AW, He S, Ritchie D et al (2010) A phase I study of anti-CD123 monoclonal antibody (mAb) CSL360 targeting leukemia stem cells (LSC) in AML. ASCO Meeting Abstracts;28:e13012

    Google Scholar 

  • Rosnet O, Buhring HJ, Marchetto S et al (1996) Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 10:238–248

    PubMed  CAS  Google Scholar 

  • Ross DD (2000) Novel mechanisms of drug resistance in leukemia. Leukemia 14:467–473

    Article  PubMed  CAS  Google Scholar 

  • Ross JJ, Arnason JT, Birnboim HC (1999) Low concentrations of the feverfew component parthenolide inhibit in vitro growth of tumor lines in a cytostatic fashion. Planta Med 65:126–129

    Article  PubMed  CAS  Google Scholar 

  • Rowinsky EK, Windle JJ, Von Hoff DD (1999) Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol 17:3631–3652

    PubMed  CAS  Google Scholar 

  • Ruefli AATK, Darcy PK, Smyth MJ, Johnstone RW (2002) P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation. Cell Death Differ 9:1266–1272

    Article  PubMed  CAS  Google Scholar 

  • Rush LJ, Dai Z, Smiraglia DJ et al (2001) Novel methylation targets in de novo acute myeloid leukemia with prevalence of chromosome 11 loci. Blood 97:3226–3233

    Article  PubMed  CAS  Google Scholar 

  • Saglio G, Kim DW, Issaragrisil S et al (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362:2251–2259

    Article  PubMed  CAS  Google Scholar 

  • Saiki JH, McCredie KB, Vietti TJ et al (1978) 5-azacytidine in acute leukemia. Cancer 42:2111–2114

    Article  PubMed  CAS  Google Scholar 

  • San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917

    Article  PubMed  CAS  Google Scholar 

  • Santos FP, Qiao W, Cortes JE et al (2009) Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia (AML). J Clin Oncol (Meeting Abstracts) 27:7015

    Google Scholar 

  • Sanz MA, Martín G, González M et al (2004) Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy:a multicenter study by the PETHEMA group. Blood 103:1237–1243

    Article  PubMed  CAS  Google Scholar 

  • Sauvageau G, Lansdorp PM, Eaves CJ et al (1994) Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci U S A 91:12223–12227

    Article  PubMed  CAS  Google Scholar 

  • Schnittger S, Schoch C, Dugas M et al (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100:59–66

    Article  PubMed  CAS  Google Scholar 

  • Scholl C, Bansal D, Dohner K et al (2007) The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest 117:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Schroeder T, Saure C, Bruns I et al (2009) Clinical efficacy of sorafenib in patients with Acute Myeloid Leukemia (AML) and activating FLT3-mutations. ASH Annual Meeting Abstracts 114:2057

    Google Scholar 

  • Seedhouse CH, Das-Gupta EP, Russell NH (2003) Methylation of the hMLH1 promoter and its association with microsatellite instability in acute myeloid leukemia. Leukemia 17:83–88

    Article  PubMed  CAS  Google Scholar 

  • Servida F, Soligo D, Delia D et al (2005) Sensitivity of human multiple myelomas and myeloid leukemias to the proteasome inhibitor I. Leukemia 19:2324–2331

    Article  PubMed  CAS  Google Scholar 

  • Sievers EL, Larson RA, Stadtmauer EA et al (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19:3244–3254

    PubMed  CAS  Google Scholar 

  • Silverman LR, Demakos EP, Peterson BL et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Grandage VL, Linch DC, Khwaja A (2005) Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 24:2410–2420

    Article  PubMed  CAS  Google Scholar 

  • Smith BD, Levis M, Beran M et al (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103:3669–3676

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW (1998) The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci U S A 95:7024–7029

    Article  PubMed  CAS  Google Scholar 

  • Solary E, Witz B, Caillot D et al (1996) Combination of quinine as a potential reversing agent with mitoxantrone and cytarabine for the treatment of acute leukemias: a randomized multicenter study. Blood 88:1198–1205

    PubMed  CAS  Google Scholar 

  • Solary E, Drenou B, Campos L et al (2003) Quinine as a multidrug resistance inhibitor: a phase 3 multicentric randomized study in adult de novo acute myelogenous leukemia. Blood 102:1202–1210

    Article  PubMed  CAS  Google Scholar 

  • Stapnes C, Doskeland AP, Hatfield K et al (2007) The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 136:814–828

    Article  PubMed  CAS  Google Scholar 

  • Stasi R, Evangelista ML, Buccisano F, Venditti A, Amadori S (2008) Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer Treat Rev 34:49–60

    Article  PubMed  CAS  Google Scholar 

  • Stirewalt DL, Kopecky KJ, Meshinchi S et al (2001) FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 97:3589–3595

    Article  PubMed  CAS  Google Scholar 

  • Stirewalt DL, Kopecky KJ, Meshinchi S et al (2006) Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 107:3724–3726

    Article  PubMed  CAS  Google Scholar 

  • Stone RM, DeAngelo DJ, Klimek V et al (2005) Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105:54–60

    Article  PubMed  CAS  Google Scholar 

  • Stone RM, Fischer T, Paquette R et al (2009) A phase 1b study of midostaurin (PKC412) in combination with daunorubicin and cytarabine induction and high-dose cytarabine consolidation in patients under age 61 with newly diagnosed de novo acute myeloid leukemia: overall survival of patients whose blasts have FLT3 mutations is similar to those with wild-type FLT3. ASH Annual Meeting Abstracts 114:634

    Google Scholar 

  • Su Y, Li SY, Ghosh S, Ortiz J, Hogge DE, Frankel AE (2010) Characterization of variant diphtheria toxin-interleukin-3 fusion protein, DTIL3K116W, for phase I clinical trials. Biologicals 38:144–149

    Article  PubMed  CAS  Google Scholar 

  • Tallman MS, Andersen JW, Schiffer CA et al (1997) All-trans-retinoic acid in acute promyelocytic leukemia. N Eng J Med 337:1021–1028

    Article  CAS  Google Scholar 

  • Tamburini J, Elie C, Bardet V et al (2007) Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood 110:1025–1028

    Article  PubMed  CAS  Google Scholar 

  • Taussig DC, Pearce DJ, Simpson C et al (2005) Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood 106:4086–4092

    Article  PubMed  CAS  Google Scholar 

  • Tazzari PL, Cappellini A, Ricci F et al (2007) Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 21:427–438

    Article  PubMed  CAS  Google Scholar 

  • Testa U, Riccioni R, Biffoni M et al (2005) Diphtheria toxin fused to variant human interleukin-3 induces cytotoxicity of blasts from patients with acute myeloid leukemia according to the level of interleukin-3 receptor expression. Blood 106:2527–2529

    Article  PubMed  CAS  Google Scholar 

  • Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  • Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of Multidrug Resistance P-glycoprotein via Nuclear Factor-κB Activation Protects Kidney Proximal Tubule Cells from Cadmium- and Reactive Oxygen Species-induced Apoptosis. J Biol Chem 275:1887–1896

    Article  PubMed  Google Scholar 

  • Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  PubMed  CAS  Google Scholar 

  • Thomas X, Campos L, Mounier C et al (2005) Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk Res 29:1049–1058

    Article  PubMed  CAS  Google Scholar 

  • van der Holt B, Lowenberg B, Burnett AK et al (2005) The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated acute myeloid leukemia (AML), in relation to MDR1 status at diagnosis. Blood 106:2646–2654

    Article  PubMed  CAS  Google Scholar 

  • van Rhenen A, Feller N, Kelder A et al (2005) High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 11:6520–6527

    Article  PubMed  CAS  Google Scholar 

  • Voso MT, Scardocci A, Guidi F et al (2004) Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. Blood 103:698–700

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Krivtsov AV, Sinha AU et al (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327:1650–1653

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu Y, Malek Sami N, Zheng P, Liu Y (2011) Targeting HIF1[alpha] eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411

    Article  PubMed  CAS  Google Scholar 

  • Wattel E, Solary E, Hecquet B et al (1998) Quinine improves the results of intensive chemotherapy in myelodysplastic syndromes expressing P glycoprotein: results of a randomized study. Br J Haematol 102:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Weisberg E, Boulton C, Kelly LM et al (2002) Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1:433–443

    Article  PubMed  CAS  Google Scholar 

  • Wen J, You KR, Lee SY, Song CH, Kim DG (2002) Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J Biol Chem 277:38954–38964

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102:972–980

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Thompson JE, Carroll M (2005) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106:4261–4268

    Article  PubMed  CAS  Google Scholar 

  • Yalcintepe L, Frankel AE, Hogge DE (2006) Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice. Blood 108:3530–3537

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kiyoi H, Nakano Y et al (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97:2434–2439

    Article  PubMed  CAS  Google Scholar 

  • Yanada M, Matsuo K, Emi N, Naoe T (2005a) Efficacy of allogeneic hematopoietic stem cell transplantation depends on cytogenetic risk for acute myeloid leukemia in first disease remission: a metaanalysis. Cancer 103:1652–1658

    Article  PubMed  Google Scholar 

  • Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T (2005b) Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 19:1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Ysebaert L, Chicanne G, Demur C et al (2006) Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 20:1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Zarrinkar PP, Gunawardane RN, Cramer MD et al (2009) AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114:2984–2992

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Ong CN, Shen HM (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Konopleva M, Shi YX et al (2008) Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100:184–198

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Konopleva M, Cabreira-Hansen M et al (2004) Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18:267–275

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Chen A, Jamieson CH et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Lancet M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Duong, V., Lancet, J. (2012). Novel Targeted Therapeutics for Acute Myeloid Leukemia. In: Tao, J., Sotomayor, E. (eds) Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics. Cancer Growth and Progression, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5028-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5028-9_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5027-2

  • Online ISBN: 978-94-007-5028-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics