Skip to main content

Chronic Myeloproliferative Disorders:From Molecular Pathogenesis to Targeted Therapy

  • Chapter
  • First Online:
Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics

Part of the book series: Cancer Growth and Progression ((CAGP,volume 14))

  • 1268 Accesses

Abstract

The elucidation of the molecular pathogenesis of a variety of serious or life-threatening conditions has led to the expectation that the development of safe and effective therapies will soon follow. This principle has previously been demonstrated in malignant hematology by the effectiveness of ABL kinase inhibitors in chronic myelogenous leukemia (CML). A new opportunity to deliver on this premise is underway in the closely related non-CML myeloproliferative neoplasms (MPNs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using HUGO Gene Nomenclature, human gene symbols are italicized, with all letters in uppercase (JAK2). Protein designations are the same as the gene symbol but are not italicized (JAK2). Mouse gene symbols are italicized, with only the first letter in uppercase (Jak2). Murine proteins are designation in the same fashion but are not italicized (Jak2).

References

  • Ahmed R, Begam K, Warner SL et al (2011) In vitro and in vivo characterization of SGI-1252, a small molecule inhibitor of JAK2. Exp Hematol 39:14–25. http://linkinghub.elsevier.com/retrieve/pii/S0301472X10004947?showall=true

    Google Scholar 

  • Akada H, Yan D, Zou H et al (2010) Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 115:3589–3597. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;115/17/3589

    Google Scholar 

  • Anía BJ, Suman VJ, Sobell JL et al (1994) Trends in the incidence of polycythemia vera among Olmsted county, Minnesota residents, 1935–1989. Am J Hematol 47:89–93. http://dx.doi.org/10.1002/ajh.2830470205

    Google Scholar 

  • Barosi G, Bergamaschi G, Marchetti M et al (2007) JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood 110:4030–4036. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17712047

    Google Scholar 

  • Beer PA, Delhommeau F, LeCouedic JP et al (2010) Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 115:2891–2900. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20008300

    Google Scholar 

  • Begna KH, Mesa RA, Pardanani A et al (2011) A phase-2 trial of low-dose pomalidomide in myelofibrosis. Leukemia 25:301–304. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21052089

    Google Scholar 

  • Boudeau J, Miranda-Saavedra D, Barton GJ et al (2006) Emerging roles of pseudokinases. Trends Cell Biol 16:443–452. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16879967

    Google Scholar 

  • Bumm TG, Elsea C, Corbin AS et al (2006) Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 66:11156–11165. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17145859

    Google Scholar 

  • Carbuccia N, Murati A, Trouplin V et al (2009) Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 23:2183–2186. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19609284

    Google Scholar 

  • Cervantes F, Barosi G (2005) Myelofibrosis with myeloid metaplasia: diagnosis, prognostic factors, and staging. Semin oncol 32:395–402. http://linkinghub.elsevier.com/retrieve/pii/S0093775405001557

    Google Scholar 

  • Cervantes F, Pereira A, Esteve J et al (1997) Identification of ‘short-lived’ and ‘long-lived’ patients at presentation of idiopathic myelofibrosis. Br J Haematol 97:635–640. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9207412

    Google Scholar 

  • Cervantes F, Barosi G, Hernandez-Boluda JC et al (2001) Myelofibrosis with myeloid metaplasia in adult individuals 30 years old or younger: presenting features, evolution and survival. Eur J Haematol 66:324–327. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11422412

    Google Scholar 

  • Cervantes F, Mesa R, Barosi G (2007) New and old treatment modalities in primary myelofibrosis. Cancer J 13:377–383. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18032975

    Google Scholar 

  • Cervantes F, Passamonti F, Barosi G (2008) Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia 22:905–914. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18385755

    Google Scholar 

  • Cervantes F, Dupriez B, Pereira A et al (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113:2895–2901. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18988864

    Google Scholar 

  • Ciurea SO, Sadegi B, Wilbur A et al (2008) Effects of extensive splenomegaly in patients with myelofibrosis undergoing a reduced intensity allogeneic stem cell transplantation. Br J Haematol 141:80–83. http://dx.doi.org/10.1111/j.1365-2141.2008.07010.x

    Google Scholar 

  • Dameshek W (1951) Some speculations on the myeloproliferative syndromes. Blood 6:372–375. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14820991

    Google Scholar 

  • De Stefano V, Za T, Rossi E et al (2008) Recurrent thrombosis in patients with polycythemia vera and essential thrombocythemia: incidence, risk factors, and effect of treatments. Haematologica 93:372–380. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18268279

    Google Scholar 

  • Delhommeau F, Dupont S, Della Valle V et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19474426

    Google Scholar 

  • Di Nisio M, Barbui T, Di Gennaro L et al (2007) The haematocrit and platelet target in polycythemia vera. Br J Haematol 136:249–259. http://dx.doi.org/10.1111/j.1365-2141.2006.06430.x

    Google Scholar 

  • Dobrzanski P, Hexner E, Serdikoff C et al (2006) CEP-701 is a JAK2 inhibitor which attenuates JAK2/STAT5 signaling pathway and the proliferation of primary cells from patients with myeloproliferative disorders. ASH Annu Meet Abstr 108:3594. http://abstracts.hematologylibrary.org/cgi/content/abstract/ashmtg;108/11/3594

    Google Scholar 

  • Dunbar AJ, Gondek LP, O’Keefe CL et al (2008) 250 K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 68:10349–10357. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19074904

    Google Scholar 

  • Dupriez B, Morel P, Demory JL et al (1996) Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood 88:1013–1018. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8704209

    Google Scholar 

  • Elliott MA, Tefferi A (2005) Thrombosis and haemorrhage in polycythaemia vera and essential thrombocythaemia. Br J Haematol 128:275–290. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15667529

    Google Scholar 

  • Elliott MA, Verstovsek S, Dingli D et al (2007) Monocytosis is an adverse prognostic factor for survival in younger patients with primary myelofibrosis. Leukemia Res 31:1503–1509. http://linkinghub.elsevier.com/retrieve/pii/S0145212607000756?showall=true

    Google Scholar 

  • Epstein E, Goedel A (1934) Hemorrhagic thrombocythemia with a vascular, sclerotic spleen. Virchows Arch 293:233–248

    Article  Google Scholar 

  • Finazzi G (2004) A prospective analysis of thrombotic events in the European collaboration study on low-dose aspirin in polycythemia (ECLAP). Pathol Biol (Paris) 52:285–288. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15217715

    Google Scholar 

  • Finazzi G, Caruso V, Marchioli R et al (2005) Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood 105:2664–2670. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15585653

    Google Scholar 

  • Florensa L, Bellosillo B, Arenillas L et al (2010) LY2784544, a novel JAK2 inhibitor, decreases in vitro growth of hematopoietic human progenitors from JAK2 V617F positive polycythemia vera patients. ASH Annu Meet Abstr 116:5054. http://abstracts.hematologylibrary.org/cgi/content/abstract/ashmtg;116/21/5054

    Google Scholar 

  • Fridman J, Nussenzveig R, Liu P et al (2007) Discovery and preclinical characterization of INCB018424, a selective JAK2 inhibitor for the treatment of myeloproliferative disorders. ASH Annu Meet Abstr 110:3538. http://abstracts.hematologylibrary.org/cgi/content/abstract/ashmtg;110/11/3538

    Google Scholar 

  • Funakoshi-Tago M, Pelletier S, Moritake H et al (2008) Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity. Mol Cell Biol 28:1792–1801. http://mcb.asm.org/cgi/content/abstract/28/5/1792

    Google Scholar 

  • Gangat N, Strand J, Lasho TL et al (2008) Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2V617F allele burden correlates. Eur J Haematol 80:197–200. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18081705

    Google Scholar 

  • Gangat N, Tefferi A, Thanarajasingam G et al (2009) Cytogenetic abnormalities in essential thrombocythemia: prevalence and prognostic significance. Eur J Haematol 83:17–21. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19236446

    Google Scholar 

  • Gangat N, Caramazza D, Vaidya R et al (2011) DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29:392–397. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21149668

    Google Scholar 

  • Giordanetto F, Kroemer RT (2002) Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. Protein Eng 15:727–737. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12456871

    Google Scholar 

  • Green A, Beer P (2010) Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 362:369–370. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20107228

    Google Scholar 

  • Gruppo Italiano Studio Policitemia (1995) Polycythemia vera: the natural history of 1213 patients followed for 20 years. Ann Intern Med 123:656–664. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7574220

    Google Scholar 

  • Gruppo Italiano Studio Policitemia (GISP) (1997) Low-dose aspirin in polycythaemia vera: a pilot study. Br J Haematol 97:453–456. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9163613

    Google Scholar 

  • Harrison C (2010) Rethinking disease definitions and therapeutic strategies in essential thrombocythemia and polycythemia vera. Hematology 129–134. http://asheducationbook.hematologylibrary.org/cgi/content/abstract/bloodbook;2010/1/129

    Google Scholar 

  • Harrison CN, Campbell PJ, Buck G et al (2005) Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 353:33–45. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16000354

    Google Scholar 

  • Hemminki K, Zhang H, Sundquist J et al (2009) Myeloproliferative disorders in Sweden: incidence trends and multiple tumors. Leuk Res 33:e14–e16. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18501963

    Google Scholar 

  • Hexner EO, Serdikoff C, Jan M et al (2008) Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 111:5663–5671. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17984313

    Google Scholar 

  • Hoffman R, Prchal JT, Samuelson S et al (2007) Philadelphia chromosome-negative myeloproliferative disorders: biology and treatment. Biol Blood Marrow Transplant 13:64–72. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17222772

    Google Scholar 

  • Hood J, Doukas J, Martin M et al (2007) TG101348, a potent, highly selective JAK2 inhibitor, inhibits colony formation in stem cells from polycythemia vera patients and prevents JAK2V617F-mediated splenomegaly and death in a mouse model. J Clin Oncol ASCO Annu Meet Proc 25:7031

    Google Scholar 

  • Hookham MB, Elliott J, Suessmuth Y et al (2007) The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood 109:4924–4929. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17317861

    Google Scholar 

  • Huang J, Tefferi A (2009) Erythropoiesis stimulating agents have limited therapeutic activity in transfusion-dependent patients with primary myelofibrosis regardless of serum erythropoietin level. Eur J Haematol 83:154–155. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19366369

    Google Scholar 

  • Hueck G (1879) Two cases of leukemia with peculiar blood and bone marrow findings, respectively. Arch Pathol Anat 78:475–496

    Article  Google Scholar 

  • Hussein K, Van Dyke DL, Tefferi A (2009) Conventional cytogenetics in myelofibrosis: literature review and discussion. Eur J Haematol 82:329–338. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19141119

    Google Scholar 

  • Jager R, Gisslinger H, Passamonti F et al (2010) Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 24:1290–1298. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20508609

    Google Scholar 

  • James C, Ugo V, Le Couedic J-P et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148. http://dx.doi.org/10.1038/nature03546. http://www.nature.com/nature/journal/v434/n7037/suppinfo/nature03546_S1.html

    Google Scholar 

  • Kiladjian JJ, Cassinat B, Turlure P et al (2006) High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 108:2037–2040. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16709929

    Google Scholar 

  • Kiladjian JJ, Cassinat B, Chevret S et al (2008) Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 112:3065–3072. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18650451

    Google Scholar 

  • Klampfl T, Harutyunyan A, Berg T et al (2011) Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 118:167–176. http://bloodjournal.hematologylibrary.org/content/118/1/167.abstract

    Google Scholar 

  • Kralovics R, Guan Y, Prchal JT (2002) Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 30:229–236. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11882360

    Google Scholar 

  • Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15858187

    Google Scholar 

  • Lacout C, Pisani DF, Tulliez M et al (2006) JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108:1652–1660. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;108/5/1652

    Google Scholar 

  • Lacy MQ, Tefferi A (2011) Pomalidomide therapy for multiple myeloma and myelofibrosis: an update. Leuk Lymphoma 52:560–566. http://informahealthcare.com/doi/abs/10.3109/10428194.2011.552139

    Google Scholar 

  • Landolfi R, Marchioli R, Kutti J et al (2004) Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 350:114–124. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14711910

    Google Scholar 

  • Landolfi R, Cipriani MC, Novarese L (2006) Thrombosis and bleeding in polycythemia vera and essential thrombocythemia: pathogenetic mechanisms and prevention. Best Pract Res Clin Haematol 19:617–633. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16781491

    Google Scholar 

  • Lasho TL, Tefferi A, Hood JD et al (2008) TG101348, a JAK2-selective antagonist, inhibits primary hematopoietic cells derived from myeloproliferative disorder patients with JAK2V617F, MPLW515K or JAK2 exon 12 mutations as well as mutation negative patients. Leukemia 22:1790–1792. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18354492

    Google Scholar 

  • Laurie NA, Donovan SL, Shih CS et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17080083

    Google Scholar 

  • Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15837627

    Google Scholar 

  • Lindauer K, Loerting T, Liedl KR et al (2001) Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng 14:27–37. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11287676

    Google Scholar 

  • Liu E, Jelinek J, Pastore YD et al (2003) Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality assays and comparison with PRV-1 expression and BFU-E response to erythropoietin. Blood 101:3294–3301. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12515724

    Google Scholar 

  • Lucet IS, Fantino E, Styles M et al (2006) The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 107:176–183. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16174768

    Google Scholar 

  • Ma L, Zhao B, Walgren R et al (2010) Efficacy of LY2784544, a small molecule inhibitor selective for mutant JAK2 kinase, in JAK2 V617F-induced hematologic malignancy models. ASH Annu Meet Abstr 116:4087. http://abstracts.hematologylibrary.org/cgi/content/abstract/ashmtg;116/21/4087

    Google Scholar 

  • Marty C, Lacout C, Martin A et al (2010) Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood 116:783–787. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;116/5/783

    Google Scholar 

  • Mesa RA (2009) How I treat symptomatic splenomegaly in patients with myelofibrosis. Blood 113:5394–5400. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;113/22/5394

    Google Scholar 

  • Mesa RA (2010) Assessing new therapies and their overall impact in myelofibrosis. Hematology 115–121. http://asheducationbook.hematologylibrary.org/cgi/content/abstract/bloodbook;2010/1/115

    Google Scholar 

  • Mesa RA, Silverstein MN, Jacobsen SJ et al (1999) Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted county study, 1976–1995. Am J Hematol 61:10–15. http://www3.interscience.wiley.com/cgi-bin/fulltext/61001800/PDFSTART

    Google Scholar 

  • Mesa RA, Li C-Y, Schroeder G et al (2001) Clinical correlates of splenic histopathology and splenic karyotype in myelofibrosis with myeloid metaplasia. Blood 97:3665–3667. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;97/11/3665

    Google Scholar 

  • Mesa RA, Nagorney DS, Schwager S et al (2006) Palliative goals, patient selection, and perioperative platelet management: outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer 107:361–370. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16770787

    Google Scholar 

  • Mesa RA, Verstovsek S, Rivera C et al (2008) 5-Azacitidine has limited therapeutic activity in myelofibrosis. Leukemia 23:180–182. http://dx.doi.org/10.1038/leu.2008.136

    Google Scholar 

  • Mesa RA, Pardanani AD, Hussein K et al (2010) Phase1/-2 study of Pomalidomide in myelofibrosis. Am J Hematol 85:129–130. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20052748

    Google Scholar 

  • Michiels JJ (1999) Acquired von Willebrand disease due to increasing platelet count can readily explain the paradox of thrombosis and bleeding in thrombocythemia. Clin Appl Thromb Hemost 5:147–151. http://cat.sagepub.com/content/5/3/147.abstract

    Google Scholar 

  • Moliterno AR, Hankins WD, Spivak JL (1998) Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med 338:572–580. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9475764

    Google Scholar 

  • Najean Y, Rain JD (1997a) Treatment of polycythemia vera: the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood 90:3370–3377. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9345019

    Google Scholar 

  • Najean Y, Rain JD (1997b) Treatment of polycythemia vera: use of 32P alone or in combination with maintenance therapy using hydroxyurea in 461 patients greater than 65 years of age. The French Polycythemia Study Group. Blood 89:2319–2327. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9116275

    Google Scholar 

  • Nicholson SE, Willson TA, Farley A et al (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. Embo J 18:375–385. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9889194

    Google Scholar 

  • Nowell P, Hungerford D (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497–1498

    Google Scholar 

  • Panani AD (2007) Cytogenetic and molecular aspects of Philadelphia negative chronic myeloproliferative disorders: clinical implications. Cancer Lett 255:12–25. http://linkinghub.elsevier.com/retrieve/pii/S0304383507000663?showall=true

    Google Scholar 

  • Papadakis E, Hoffman R, Brenner B (2010) Thrombohemorrhagic complications of myeloproliferative disorders. Blood Rev 24:227–232. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20817333

    Google Scholar 

  • Paquette R, Sokol L, Shah NP et al (2008) A Phase I study of XL019, a selective JAK2 inhibitor, in patients with polycythemia vera. ASH Annu Meet Abstr 112:2810. http://abstracts.hematologylibrary.org/cgi/content/abstract/ashmtg;112/11/2810

    Google Scholar 

  • Pardanani A, Hood J, Lasho T et al (2007) TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21:1658–1668. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17541402

    Google Scholar 

  • Pardanani A, Lasho T, Smith G et al (2009) CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia 23:1441–1445. http://dx.doi.org/10.1038/leu.2009.50

    Google Scholar 

  • Passamonti F, Rumi E, Pungolino E et al (2004) Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med 117:755–761. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15541325

    Google Scholar 

  • Passamonti F, Rumi E, Arcaini L et al (2005) Leukemic transformation of polycythemia vera: a single center study of 23 patients. Cancer 104:1032–1036. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16047334

    Google Scholar 

  • Passamonti F, Cervantes F, Vannucchi AM et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115:1703–1708. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;115/9/1703

    Google Scholar 

  • Petti MC, Latagliata R, Spadea T et al (2002) Melphalan treatment in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 116:576–581. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11849213

    Google Scholar 

  • Prchal JF, Axelrad AA (1974) Letter: bone-marrow responses in polycythemia vera. N Engl J Med 290:1382. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4827655

    Google Scholar 

  • Quintas-Cardama A, Tong W, Kantarjian H et al (2008) A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia//polycythemia vera myelofibrosis. Leukemia 22:965–970. http://dx.doi.org/10.1038/leu.2008.91

    Google Scholar 

  • Quintas-Cardama A, Kantarjian H, Manshouri T et al (2009) Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol 27:5418–5424. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19826111

    Google Scholar 

  • Quintas-Cardama A, Vaddi K, Liu P et al (2010) Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115:3109–3117. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;115/15/3109

    Google Scholar 

  • Reilly JT (2008) Pathogenetic insight and prognostic information from standard and molecular cytogenetic studies in the BCR-ABL-negative myeloproliferative neoplasms (MPNs). Leukemia 22:1818–1827. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18754027

    Google Scholar 

  • Riemenschneider MJ, Knobbe CB, Reifenberger G (2003) Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer 104:752–757. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12640683

    Google Scholar 

  • Ries L, Melbert D, Krapcho M et al (2008) SEER cancer statistics review, 1975–2005. National Cancer Institute, Bethesda

    Google Scholar 

  • Rollison DE, Howlader N, Smith MT et al (2008) Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood 112:45–52. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18443215

    Google Scholar 

  • Rowley JD (1973) Letter a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4126434

    Google Scholar 

  • Rozman C, Giralt M, Feliu E et al (1991) Life expectancy of patients with chronic nonleukemic myeloproliferative disorders. Cancer 67:2658–2663. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2015567

    Google Scholar 

  • Saharinen P, Silvennoinen O (2002) The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 277:47954–47963. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12351625

    Google Scholar 

  • Saharinen P, Takaluoma K, Silvennoinen O (2000) Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 20:3387–3395. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10779328

    Google Scholar 

  • Saharinen P, Vihinen M, Silvennoinen O (2003) Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Biol Cell 14:1448–1459. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12686600

    Google Scholar 

  • Sanada M, Suzuki T, Shih LY et al (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:904–908. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19620960

    Google Scholar 

  • Santos FPS, Kantarjian HM, Jain N et al (2009) Phase II study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post polycythemia vera/essential thrombocythemia myelofibrosis. Blood:blood-2009-10-246363. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;blood-2009-10-246363v1

    Google Scholar 

  • Sasaki A, Yasukawa H, Shouda T et al (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275:29338–29347. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10882725

    Google Scholar 

  • Silva M, Richard C, Benito A et al (1998) Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med 338:564–571. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9475763

    Google Scholar 

  • Smith BD, Levis M, Beran M et al (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103:3669–3676. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14726387

    Google Scholar 

  • Squizzato A, Romualdi E, Middeldorp S (2008) Antiplatelet drugs for polycythaemia vera and essential thrombocythaemia. Cochrane Database Syst Rev CD006503. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18425953

    Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) International Agency for Research on Cancer, World Health Organization. WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  • Tam CS, Kantarjian H, Cortes J et al (2009) Dynamic model for predicting death within 12 months in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. J Clin Oncol 27:5587–5593. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19786661

    Google Scholar 

  • Tartaglia AP, Goldberg JD, Berk PD et al (1986) Adverse effects of antiaggregating platelet therapy in the treatment of polycythemia vera. Semin Hematol 23:172–176. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3749927

    Google Scholar 

  • Tefferi A (2003) Polycythemia vera: a comprehensive review and clinical recommendations. Mayo Clin Proc 78:174–194. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12583529

    Google Scholar 

  • Tefferi A, Elliott M (2007) Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost 33:313–320. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17525888

    Google Scholar 

  • Tefferi A, Barosi G, Mesa RA et al (2006) International Working Group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment (IWG-MRT). Blood 108:1497–1503. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16675707

    Google Scholar 

  • Tefferi A, Pardanani A, Lim KH et al (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23:905–911. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19262601

    Google Scholar 

  • Temerinac S, Klippel S, Strunck E et al (2000) Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera. Blood 95:2569–2576. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10753836

    Google Scholar 

  • Tiedt R, Hao-Shen H, Sobas MA et al (2008) Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111:3931–3940. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;111/8/3931

    Google Scholar 

  • Tyner JW, Bumm TG, Deininger J et al (2010) CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 115:5232–5240. http://bloodjournal.hematologylibrary.org/content/115/25/5232.abstract

    Google Scholar 

  • Ugo V, Marzac C, Teyssandier I et al (2004) Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 32:179–187. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15102479

    Google Scholar 

  • Vaidya R, Siragusa S, Huang J et al (2009) Mature survival data for 176 patients younger than 60 years with primary myelofibrosis diagnosed between 1976 and 2005: evidence for survival gains in recent years. Mayo Clin Proc 84:1114–1119. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19955247

    Google Scholar 

  • Vainchenker W, Dusa A, Constantinescu SN (2008) JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol 19:385–393. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18682296

    Google Scholar 

  • Vannucchi AM, Antonioli E, Guglielmelli P et al (2007) Clinical profile of homozygous JAK2 617 V  >  F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 110:840–846. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17379742

    Google Scholar 

  • Vasquez L (1892) On a special form of cyanosis accompanied by excessive persistent erythrocytosis. Comp Rend Soc Biol 12:384–388

    Google Scholar 

  • Verstovsek S (2010) Therapeutic potential of Janus-activated kinase-2 inhibitors for the management of myelofibrosis. Clin Cancer Res 16:1988–1996. http://clincancerres.aacrjournals.org/content/16/7/1988.abstract

    Google Scholar 

  • Verstovsek S, Pardanani AD, Shah NP et al (2007) A Phase I study of XL019, a selective JAK2 inhibitor, in patients with primary myelofibrosis and post-polycythemia vera/essential thrombocythemia myelofibrosis. ASH Annu Meet Abstr 110:553. http://abstracts.hematologylibrary.org/cgi/content/abstract/ashmtg;110/11/553

    Google Scholar 

  • Verstovsek S, Deeg HJ, Odenike O et al (2010a) Phase 1/2 study of SB1518, a novel JAK2/FLT3 inhibitor, in the treatment of primary myelofibrosis. ASH Annu Meet Abstr 116:3082. http://abstracts.hematologylibrary.org/cgi/content/abstract/ashmtg;116/21/3082

    Google Scholar 

  • Verstovsek S, Kantarjian H, Mesa RA et al (2010b) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363:1117–1127. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20843246

    Google Scholar 

  • Walgren RA, Meucci MA, McLeod HL (2005) Pharmacogenomic discovery approaches: will the real genes please stand up? J Clin Oncol 23:7342–7349. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16145062

    Google Scholar 

  • Wernig G, Mercher T, Okabe R et al (2006) Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107:4274–4281. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;107/11/4274

    Google Scholar 

  • Wernig G, Kharas MG, Okabe R et al (2008) Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 13:311–320. http://www.sciencedirect.com/science/article/B6WWK-4S7B7Y8-6/2/de233c7814bd4b668c9de73d9dc8da76

    Google Scholar 

  • Wolf BC, Neiman RS (1987) Hypothesis: splenic filtration and the pathogenesis of extramedullary hematopoiesis in agnogenic myeloid metaplasia. Hematol Pathol 1:77–80. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3332874

    Google Scholar 

  • Xing S, Wanting TH, Zhao W et al (2008) Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 111:5109–5117. http://bloodjournal.hematologylibrary.org/cgi/content/abstract/bloodjournal;111/10/5109

    Google Scholar 

  • Yamaoka K, Saharinen P, Pesu M et al (2004) The Janus kinases (Jaks). Genome Biol 5:253. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15575979

    Google Scholar 

  • Zaleskas VM, Krause DS, Lazarides K et al (2006) Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One 1:e18. http://dx.plos.org/10.1371/journal.pone.0000018

    Google Scholar 

  • Zhang B, Lewis SM (1989) The splenomegaly of myeloproliferative and lymphoproliferative disorders: splenic cellularity and vascularity. Eur J Haematol 43:63–66. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2767243

    Google Scholar 

  • Zhao L, Ma Y, Seemann J et al (2010) A regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F). Biochem J 426:91–98. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19929856

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Walgren M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walgren, R.A., Prchal, J. (2012). Chronic Myeloproliferative Disorders:From Molecular Pathogenesis to Targeted Therapy. In: Tao, J., Sotomayor, E. (eds) Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics. Cancer Growth and Progression, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5028-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5028-9_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5027-2

  • Online ISBN: 978-94-007-5028-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics