Skip to main content

Fundamentals of Acoustic Metamaterials

  • Chapter
Acoustic Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 166))

Abstract

This chapter introduces the field of acoustic metamaterials in light of correspondences with related phenomena in electromagnetics. The semantic frontier between phononic/photonic crystals (PCs) and metamaterials is underpinned by low-frequency high-contrast and high-frequency homogenization models for periodic structures, the former being well suited for metamaterials, while the latter unveils the band structure and associated anomalous dispersion of PCs. We find it therefore worthwhile to outline the corresponding asymptotic models for waves propagating in such structured media. The mathematics behind the physical scene are illustrated by numerical simulations including cloaking, lensing and confinement effects via artificial anisotropy (motivated by transformational optics and acoustics), negative refraction and slow waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At this stage, the meaning of the word effectively seems to be rather vague, but its definition will be made more precise with specific physical contexts and mathematical models as we proceed.

  2. 2.

    Kohn and Shipman were the first mathematicians to retrieve Pendry’s formula for artificial magnetism via two-scale homogenization of split ring resonators in 2008 [25]. However, Bouchitté and Schweizer obtained a more general form for the tensor of effective permeability in the case of a cubic array of toroidal SRRs with a thin slit of high contrast material in 2010 [3]. In the two-dimensional case, Farhat et al. retrieved Pendry’s result in 2009, using a three-scale homogenization approach for SRRs with thin slits with Neumann data which model infinite conducting boundaries for transverse electromagnetic waves as in Fig. 1.2 or rigid boundaries in the context of acoustics [15].

  3. 3.

    One can also assume that Ω=ℝ2, in which case the displacement goes to zero at infinity if it is assumed of finite energy and the surface term naturally vanishes.

  4. 4.

    Negative refraction can also be seen as some kind of space folding, see for instance [21].

  5. 5.

    If one assumes Dirichlet (clamped) conditions hold on the upper and lower edges of the thin-domain, this kills the field oscillations in the thin bridge, which is of no physical interest.

References

  1. Alú, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005)

    Article  Google Scholar 

  2. Bigoni, D., Serkov, S., Valentini, M., Movchan, A.B.: Asymptotic models of dilute composites with imperfectly bonded inclusions. Int. J. Solids Struct. 35, 3239 (1998)

    Article  Google Scholar 

  3. Bouchitté, G., Schweizer, B.: Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8(3), 717–750 (2010)

    Article  Google Scholar 

  4. Brun, M., Guenneau, S., Movchan, A.B.: Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94, 061903 (2009)

    Article  Google Scholar 

  5. Brun, M., Guenneau, S., Movchan, A.B., Bigoni, D.: Dynamics of structural interfaces: Filtering and focussing effects for elastic waves. J. Mech. Phys. Solids 58, 1212–1224 (2010)

    Article  Google Scholar 

  6. Chakrabarti, S., Ramakrishna, S.A., Guenneau, S.: Finite checkerboards of dissipative negative refractive index. Opt. Express 14, 12950 (2006)

    Article  Google Scholar 

  7. Cherednichenko, K.D., Smyshlyaev, V.P., Zhikov, V.V.: Non-local homogenised limits for composite media with highly anisotropic periodic fibres. Proc. R. Soc. Edinb. A 136, 87–114 (2006)

    Article  Google Scholar 

  8. Craster, R.V., Kaplunov, J., Nolde, E., Guenneau, S.: High frequency homogenization for checkerboard structures: Defect modes, ultra-refraction and all-angle-negative refraction. J. Opt. Soc. Amer. A 28, 1032–1041 (2011)

    Article  Google Scholar 

  9. Craster, R.V., Kaplunov, J., Nolde, E., Guenneau, S.: Bloch dispersion and high frequency homogenization for separable doubly-periodic structures. Wave Motion 49, 333–346 (2012).

    Article  Google Scholar 

  10. Craster, R.V., Kaplunov, J., Pichugin, A.V.: High frequency homogenization for periodic media. Proc. R. Soc. Lond. A 466, 2341–2362 (2010)

    Article  CAS  Google Scholar 

  11. Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45 (2007)

    Article  Google Scholar 

  12. Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nature 5, 452 (2006)

    Article  CAS  Google Scholar 

  13. Farhat, M., Enoch, S., Guenneau, S., Movchan, A.B.: Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008)

    Article  CAS  Google Scholar 

  14. Farhat, M., Guenneau, S., Enoch, S., Movchan, A.: Cloaking bending waves propagating in thin plates. Phys. Rev. B 79, 033102 (2009)

    Article  Google Scholar 

  15. Farhat, M., Guenneau, S., Enoch, S., Movchan, A.B.: Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators. Phys. Rev. E 80, 046309 (2009)

    Article  CAS  Google Scholar 

  16. Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685–693 (2003)

    Google Scholar 

  17. Guenneau, S., Enoch, S., McPhedran, R.C.: L’invisibilite en vue. Pour Sci. (French edn. of Sci. Am.) 382, 42–49 (2009)

    Google Scholar 

  18. Guenneau, S., Gralak, B., Pendry, J.B.: Perfect corner reflector. Opt. Lett. 30, 1204–1206 (2005)

    Article  Google Scholar 

  19. Guenneau, S., Movchan, A.B., Ramakrishna, S.A., Petursson, G.: Acoustic meta-materials for sound focussing and confinement. New J. Phys. 9, 399 (2007)

    Article  Google Scholar 

  20. Guenneau, S., Poulton, C.G., Movchan, A.B.: Oblique propagation of electromagnetic and elastic waves for an array of cylindrical fibres. Proc. R. Soc. Lond. A 459, 2215–2263 (2003)

    Article  Google Scholar 

  21. Guenneau, S., Ramakrishna, S.A.: Negative refractive index, perfect lenses and checkerboards: Trapping and imaging effects in folded optical spaces. C. R. Phys. 10, 352–378 (2009)

    Article  CAS  Google Scholar 

  22. Guenneau, S., Vutha, A.C., Ramakrishna, S.A.: Negative refraction in 2d checkerboards related by mirror anti-symmetry and 3d corner lenses. New J. Phys. 7, 164 (2005)

    Article  Google Scholar 

  23. He, S., Jin, Y., Ruan, Z., Kuang, J.: On subwavelength and open resonators involving metamaterials of negative refraction index. New J. Phys. 7, 210 (2005)

    Article  Google Scholar 

  24. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994)

    Book  Google Scholar 

  25. Kohn, R.V., Shipman, S.P.: Magnetism and the homogenization of micro-resonators. Multiscale Model. Simul. 7, 62–92 (2008)

    Article  Google Scholar 

  26. Kozlov, V., Mazya, V., Movchan, A.B.: Asymptotic Analysis of Fields in Multistructures. Oxford Science Publications, Oxford (1999)

    Google Scholar 

  27. Leonhardt, U.: Optical conformal mapping. Science 312, 1777 (2006)

    Article  CAS  Google Scholar 

  28. Li, J., Chan, C.T.: Double negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004)

    Article  Google Scholar 

  29. Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734 (2000)

    Article  CAS  Google Scholar 

  30. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  31. Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)

    Article  Google Scholar 

  32. Milton, G.W., Nicorovici, N.A.: On the cloaking effects associated with localized anomalous resonances. Proc. R. Soc. Lond. A 462, 3027 (2006)

    Article  Google Scholar 

  33. Movchan, A.B., Guenneau, S.: Localised modes in split ring resonators. Phys. Rev. B 70, 125,116 (2004)

    Article  Google Scholar 

  34. Movchan, A.B., Movchan, N.V., Guenneau, S., McPhedran, R.C.: Asymptotic estimates for localized electromagnetic modes in doubly periodic structures with defects. Proc. R. Soc. A 463, 1045 (2007)

    Article  Google Scholar 

  35. Nicorovici, N.A., McPhedran, R.C., Milton, G.W.: Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994)

    Article  Google Scholar 

  36. Norris, A., Shuvalov, A.L.: Elastic cloaking theory. Wave Motion 48, 525–538 (2011)

    Article  Google Scholar 

  37. Notomi, N.: Superprism phenomena in photonic crystals. Opt. Quantum Electron. 34, 133 (2002)

    Article  CAS  Google Scholar 

  38. O’Brien, S., Pendry, J.B.: Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002)

    Article  Google Scholar 

  39. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  CAS  Google Scholar 

  40. Pendry, J.B.: Negative refraction. Contemp. Phys. 45, 191 (2004)

    Article  CAS  Google Scholar 

  41. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4763 (1996)

    Article  Google Scholar 

  42. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1996)

    Article  Google Scholar 

  43. Pendry, J.B., Ramakrishna, S.A.: Focussing light with negative refractive index. J. Phys. Condens. Matter 15, 6345 (2003)

    Article  CAS  Google Scholar 

  44. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  CAS  Google Scholar 

  45. Ramakrishna, S.A.: Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449 (2005)

    Article  Google Scholar 

  46. Ramakrishna, S.A., Guenneau, S., Enoch, S., Tayeb, G., Gralak, B.: Light confinement through negative refraction in photonic crystal and metamaterial checkerboards. Phys. Rev. A 75, 063830 (2007)

    Article  Google Scholar 

  47. Russell, P.S., Marin, E., Diez, A., Guenneau, S., Movchan, A.B.: Sonic band gap PCF preforms: enhancing the interaction of sound and light. Opt. Express 11, 2555 (2003)

    Article  CAS  Google Scholar 

  48. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Springer, Berlin (1980)

    Google Scholar 

  49. Smith, D.R., Padilla, W.J., Vier, V.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  CAS  Google Scholar 

  50. Torrent, D., Sanchez-Dehesa, J.: Acoustic cloaking in two dimensions: A feasible approach. New J. Phys. 10, 063015 (2008)

    Article  Google Scholar 

  51. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968)

    Article  Google Scholar 

  52. Zhikov, V.V.: On an extension of the method of two-scale convergence and its applications. Sb. Math. 191, 973–1014 (2000)

    Article  Google Scholar 

  53. Zolla, F., Renversez, G., Nicolet, A., Kuhlmey, B., Guenneau, S., Felbacq, D.: Foundations of Photonic Crystal Fibres. Imperial College Press, London (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sébastien Guenneau or Richard V. Craster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guenneau, S., Craster, R.V. (2013). Fundamentals of Acoustic Metamaterials. In: Craster, R., Guenneau, S. (eds) Acoustic Metamaterials. Springer Series in Materials Science, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4813-2_1

Download citation

Publish with us

Policies and ethics