Skip to main content

Hsp27 Phosphorylation Patterns and Cellular Consequences

  • Chapter
  • First Online:
Cellular Trafficking of Cell Stress Proteins in Health and Disease

Part of the book series: Heat Shock Proteins ((HESP,volume 6))

  • 1080 Accesses

Abstract

The human small heat shock protein 27 (HSP27 or HSPB1) is a multifunctional protein that participates in a variety of cellular processes such as controlling protein folding, F-actin-dependent processes, cytoprotection/anti-apoptosis, differentiation, cell proliferation, and gene expression. The structural and physiological properties of HSP27 are partially controlled by phosphorylation and several protein kinases that mediate phosphorylation have been identified. While phosphorylation of serine residues 15, 78 and 82 has been most extensively studied, other in vivo phosphorylation modifications have been identified. Here we review the different phosphorylations of HSP27 and consider the consequences of phosphorylation on HSP27’s conformation, subcellular localization, and cellular roles. We also address the phosphorylation pattern under pathogenic conditions and discuss the possible implications of HSP27 phosphorylation in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Madhoun AS, Chen YX, Haidari L, Rayner K, Gerthoffer W, McBride H, O’Brien ER (2007) The interaction and cellular localization of HSP27 and ERβ are modulated by 17β-estradiol and HSP27 phosphorylation. Mol Cell Endocrinol 270:33–42

    Article  PubMed  CAS  Google Scholar 

  • Abisambra JF, Blair LJ, Hill SE, Jones JR, Kraft C, Rogers J, Koren J III, Jinwal UK, Lawson L, Johnson AG, Wilcock D, O’Leary JC, Jansen-West K, Muschol M, Golde TE, Weeber EJ, Banko J, Dickey CA (2010) Phosphorylation dynamics regulate Hsp27-mediated rescue of neuronal plasticity deficts in tau transgenic mice. J Neurosci 30:15374–15382

    Article  PubMed  CAS  Google Scholar 

  • Arata S, Hamaguchi S, Nose K (1997) Inhibition of colony formation of NIH 3T3 cells by the expression of the small molecular weight heat shock protein HSP27: involvement of its phosphorylation and aggregation at the C-terminal region. J Cell Physiol 170:19-26

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP (2001) Hsp27: novel regulator of intracellular redox state. IUBMB Life 52:303–307

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26

    Article  PubMed  Google Scholar 

  • Banerjee S, Lin CFL, Skinner KA, Schiffhauer LM, Peacock J, Hicks DG, Redmond EM, Morrow D, Huston A, Shayne M, Langstein HN, Miller-Graziano CL, Strickland J, O’Donoghue L, De AK (2011) Heat shock protein 27 diferentiates tolerogenic marcrophages that may support human breast cancer progression. Cancer Res 71:318–327

    Article  PubMed  CAS  Google Scholar 

  • Barutta F, Pinach S, Giunti S, Vittone F, Forbes JM, Chiarle R, Arnstein M, Perin PC, Camussi G, Copper ME, Gruden G (2008) Heat shock protein expression in diabetic nephropathy. Am J Physiol Renal Physiol 295:F1817–F1824

    Article  PubMed  CAS  Google Scholar 

  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101:12130–12135

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP, Rubenstein DS (2005) Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem 280:23778–23784

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz P, Diaz LA, Hall RP, Rubenstein DS (2008a) Induction of p38MAPK and Hsp27 phosphorylation in pemphigus patient skin. J Invest Dermatol 128:738–740

    Article  CAS  Google Scholar 

  • Berkowitz P, Chua M, Liu Z, Diaz LA, Rubenstein DS (2008b) Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signalling in the skin. Am J Pathol 173:1628–1636

    Article  CAS  Google Scholar 

  • Berrou E, Bryckaert M (2009) Recruitment of protein phosphatase 2A to dorsal ruffles by platelet-derived growth factor in smooth muscle cells: dephosphorylation of Hsp27. Exp Cell Res 315:836–848

    Article  PubMed  CAS  Google Scholar 

  • Bertrand-Vallery V, Belot N, Dieu M, Delaive E, Ninane N, Demazy C, Raes M, Salmon M, Poumay Y, Debacq-Chainiaux F, Toussaint O (2010) Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor. PLoS One 5:e10462

    Article  PubMed  CAS  Google Scholar 

  • Bitar KN, Patil SB (2004) Aging and gastrointestinal smooth muscle. Mech Ageing Dev 125:907–910

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Bova MP, Mchaourab HS, Han Y, Fung, BKK (2000) Subunit exchange of small heat shock proteins. Analysis of oligomer formation of aA-crystallin and hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275:1035–1042

    Google Scholar 

  • Brugnano JL, Chan BK, Seal BL, Panitch A (2011) Cell-penetrating peptides can confer biological function: regulation of inflammatory cytokines in human monocytes by MK2 inhibitor peptides. J Control Release 155:128–133

    Article  PubMed  CAS  Google Scholar 

  • Brunet Simioni M, De Thonel A, Hammann A, Joly AL, Bossis G, Fourmaux E, Bouchot A, Landry J, Piechaczyk M, Garrido C (2009) Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene 28:3332–3344

    Article  CAS  Google Scholar 

  • Bryantsev AL, Kurchashova SY, Golyshev SA, Polyakov VY, Wunderink HF, Kanon B, Budagova KR, Kabakov AE, Kampinga HH (2007a) Regulation of stress-induced intracellular sorting and chaperone function of Hsp27 (HspB1) in mammalian cells. Biochem J 407:407–417

    Article  CAS  Google Scholar 

  • Bryantsev AL, Chechenova MB, Shelden EA (2007b) Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress. Exp Cell Res 313:195–209

    Article  CAS  Google Scholar 

  • Bukach OV, Glukhova AE, Seit-Nebi AS, Gusev NB (2009) Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Biochim Biophys Acta 1794:486–495

    Article  PubMed  CAS  Google Scholar 

  • Butt E, Immler D, Meyer HE, Kotlyarov A, Laass K, Gaestel M (2001) Heat shock protein 27 is a substrate of cGMP-dependent protein kinase in intact human platelets: phosphorylation-induced actin polymerization caused by HSP27 mutants. J Biol Chem 276:7108–7113

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Ciocca DR (2008) Heat shock proteins: stress protein with Janus-like properties in cancer. Int J Hyperthermia 24:31–39

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperines and the heat shock response in longevity and aging—a mini-review. Gerontology 55:550–558

    Article  PubMed  CAS  Google Scholar 

  • Cairns J, Qin S, Philp R, Tan YH, Guy GR (1994) Dephosphorylaton of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem 269:9176–9183

    PubMed  CAS  Google Scholar 

  • Chandrika BB, Maney SK, Lekshmi SU, Retnabhai ST (2010) Endoplasmic reticulum targeted Bcl2 confers long term survival through phosphorylation of heat shock protein 27. Int J Biochem Cell Biol 42:1984–1992

    Google Scholar 

  • Charette SJ, Lavoie JN, Landry J (2000) Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602–7612

    Article  PubMed  CAS  Google Scholar 

  • Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5:392–401

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12:51–58

    Article  PubMed  CAS  Google Scholar 

  • Chen HF, Xie LD, Xu CS (2010) The signal transduction pathways of heat shock protein 27 phosphorylation in vascular smooth muscle cells. Mol Cell Biochem 333:49–56

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  PubMed  CAS  Google Scholar 

  • Clements RT, Sodha NR, Feng J, Mieno S, Boodhwani M, Ramlawi B, Bianchi C, Sellke FW (2007) Phosphorylation and translocation of heat shock protein 27 and alphaB-crystallin in human myocardium after cardioplegia and cardiopulmonary bypass. J Thorac Cardiovasc Surg 134:1461–1470

    Article  PubMed  CAS  Google Scholar 

  • Clements RT, Feng J, Cordeiro B, Bianchi C, Sellke FW (2011) p38 MAPK-dependent small HSP27 and αB-crystallin phosphorylation in regulation of myocardail function following cardioplegic arrest. Am J Physiol Heart Circ Physiol 300:H1669–H1677

    Article  PubMed  CAS  Google Scholar 

  • Collins PL, Crowe JE Jr (2007) Respiratory syncytial virus and metapneumovirus. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1601–1646

    Google Scholar 

  • Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70

    Article  PubMed  CAS  Google Scholar 

  • Cosentino C, Grieco D, Costanzo V (2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 30:546–555

    Article  PubMed  CAS  Google Scholar 

  • Craig T, Smelick C, de Magalhaes JP (2010) The digital ageing atlas. http://ageing-map.org

  • Dai T, Natarajan R, Nast CC, LaPage J, Chuang P, Sim J, Tong L, Chamberlin M, Wang S, Adler, SG (2006) Glucose and diabetes: effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton. Kidney Int 69:806–814

    Article  PubMed  CAS  Google Scholar 

  • De Thonel A Vandekerckhove J, Lanneau D, Selvakumar S, Courtois G, Hazoume A, Brunet M, Maurel S, Hammann A, Ribeil JA, Zermati Y, Gabet AS, Boyes J, Solary E, Hermine O, Garrido C (2010) HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood 116:85–96

    Article  PubMed  CAS  Google Scholar 

  • de Souza AI, Wait R, Mitchell AG, Banner NR, Dunn MJ, Rose ML (2005) Heat shock protein 27 is associated with freedom from graft vasculopathy after human cardiac transplantation. Cir Res 97:192–198

    Article  CAS  Google Scholar 

  • Doerwald L, van Genesen ST, Onnekink C, Marin-Vinader L, de Lange F, de Jong WW, Lubsen NH (2006) The effect of αB-crystallin and Hsp27 on the availability of translation initiation factors in heat-shocked cells. Cell Mol Life Sci 63:735–743

    Article  PubMed  CAS  Google Scholar 

  • Doi T, Adachi S, Takai S, Matsushima-Nishiwaki R, Kato H, Enomoto Y, Minamitani C, Otsuka T, Tokuda H, Akamatsu S, Iwama T, Kozawa O, Ogura S (2009) Antithrombin III suppresses ADP-induced platelet granule secretion: inhibition of HSP27 phosphorylation. Arch Biochem Biophys 489:62–67

    Article  PubMed  CAS  Google Scholar 

  • Dokas LA, Malone AM, Williams FE, Nauli SM, Messer WS Jr (2011) Multiple protein kinases determine the phosphorylated state of the small heat shock protein, HSP27, in SH-SY5Y neuroblastoma cells. Neuropharmacology 61:12–24

    Article  PubMed  CAS  Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186

    Article  PubMed  CAS  Google Scholar 

  • Doshi BM, Hightower LE, Lee J (2010) HSPB1, actin filament dynamics, and aging cells. Ann N Y Acad Sci 1197:76–84

    Article  PubMed  CAS  Google Scholar 

  • Durán MC, Boeri-Erba E, Mohammed S, Martin-Ventura JL, Egido J, Vivanco F Jensen ON (2007) Characterization of HSP27 phosphorylation sites in human atherosclerotic plaque secretome. Methods Mol Biol 357:151–163

    PubMed  Google Scholar 

  • Ehrnsperger M, Gräber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed  CAS  Google Scholar 

  • Elad N, Maimon T, Frenkiel-Krispin D, Lim RY, Medalia O (2009) Structural analysis of the nuclear pore complex by integrated approaches. Curr Opin Struct Biol 19:226–232

    Article  PubMed  CAS  Google Scholar 

  • Evans IM, Britton G, Zachary IC (2008) Vascular endothelial growth factor induces heat shock protein (HSP) 27 serine 82 phosphorylation and endothelial tubulogenesis via protein kinase D and independent of p38 kinase. Cell Signal 20:1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Evans IM, Bagherzadeh A, Charles M, Raynham T, Ireson C, Boakes A, Kelland L Zachary IC (2010) Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells. Biochem J 429:565–572

    Article  PubMed  CAS  Google Scholar 

  • Fanelli MA, Cuello Carrion FD, Dekker J, Schoemaker J, Ciocca DR (1998) Serological detection of heat shock protein hsp27 in normal and breast cancer patients. Cancer Epidemiol Biomarkers Prev 7:791–795

    PubMed  CAS  Google Scholar 

  • Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR, Fang CY, Lu HJ, Yang PY, Tang ZY (2005) Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 5:4581–4588

    Article  PubMed  CAS  Google Scholar 

  • Ferns G, Shams S, Shafi S (2006) Heat shock protein 27: its potential role in vascular disease. Int J Exp Path 87:253–274

    Article  CAS  Google Scholar 

  • Fujita R, Ounzain S, Wang AC, Heads RJ, Budhram-Mahadeo VS (2011) Hsp-27 induction requires POU4F2/Brn-3b TF in doxorubicin-treated breast cancer cells, whereas phosphorylation alters its cellular localization following drug treatment. Cell Stress Chaperones 16:427–439

    Google Scholar 

  • Fukagawa Y, Nishikawa J, Kuramitsu Y, Iwakiri D, Takada K, Imai S, Satake M, Okamoto T, Fujimoto M, Okita K, Nakamura K, Sakaida I (2008) Epstein-Barr virus upregulates phosphorylated heat shock protein 27 kDa in carcinoma cells using the phosphoinositide 3-kinase/Akt pathway. Electrophoresis 29:3192–3200

    PubMed  CAS  Google Scholar 

  • Gabunia K, Jain S, England RN, Autieri MV (2011) Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility. Am J Physiol Cell Physiol 300:C896–C906

    Article  PubMed  CAS  Google Scholar 

  • Gaestel M, Benndorf R, Hayess K, Priemer E, Engel K (1992) Dephosphorylation of the small heat shock protein hsp25 by calcium/calmodulin-dependent (type 2B) protein phosphatase. J Biol Chem 267:21607–21611

    PubMed  CAS  Google Scholar 

  • Garcia-Arguinzonis M, Padró T, Lugano R, Llorente-Cortes V, Badimon L (2010) Low-density lipoproteins induce heat shock protein 27 dephosphorylation, oligomerization, and subcellular relocalization in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 30:1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5:2592–2601

    Article  PubMed  CAS  Google Scholar 

  • Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13

    Article  PubMed  CAS  Google Scholar 

  • Geum D, Son GH, Kim K (2002) Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. J Biol Chem 277:19913–19921

    Article  PubMed  CAS  Google Scholar 

  • Gnad F, Gunawardena J, Mann M (2011) Phosida 2011: the posttranslational modification database. Nucleic Acids Res 39:D253–D260

    Article  PubMed  Google Scholar 

  • Gonzalez-Mejia ME, Voss OH, Murnan EJ, Doseff AI (2010) Apigenin-induced apoptosis of leukemia cells is mediated by a bimodal and differentially residue-specific phosphorylation of heat-shock protein-27. Cell Death Dis 1:e64

    Article  PubMed  CAS  Google Scholar 

  • Gourlay CW, Ayscough KR (2005) The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res 5:1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Gusev NB, Bogatcheva NV, Marston SB (2002) Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry 67:511–519

    PubMed  CAS  Google Scholar 

  • Hadchity E, Aloy MT, Paulin C, Armandy E, Watkin E, Rousson R, Gleave M, Chapet O, Rodriguez-Lafrasse C (2009) Heat shock protein 27 as a new therapeutic target for radiation sensitization of head and neck squamous cell carcinoma. Mol Ther 17:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  PubMed  CAS  Google Scholar 

  • Hassan S, Biswas MH, Zhang C, Du C, Balaji KC (2009) Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene 28:4386–4396

    Article  PubMed  CAS  Google Scholar 

  • Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, Schwartz JH, Borkan SC (2008) Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 283:12305–12313

    Article  PubMed  CAS  Google Scholar 

  • Hayes D, Napoli V, Mazurkie A, Stafford WF, Graceffa P (2009) Phosphorylation dependence of Hsp27 multimeric size and molecular chaperone function. J Biol Chem 284:18801–18807

    Article  PubMed  CAS  Google Scholar 

  • Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA, Gerthoffer WT (1999) A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 274:24211–24219

    Article  PubMed  CAS  Google Scholar 

  • Hollander JM, Martin JL, Belke DD, Scott BT, Swanson E, Krishnamoorthy V, Dillmann WH (2004) Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia/reperfusion injury in a transgenic mouse model. Circulation 110:3544–3552

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Zhang QY, Liu J, Wang ZQ, Zhang Y, Xiao Q, Lu J, Zhou HY, Chen SD (2009) Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth. J Proteome Res 8:2768–2787

    Article  PubMed  CAS  Google Scholar 

  • Horman S, Galand P, Mosselmans R, Legros N, Leclercq G, Mairesse N (1997) Changes in the phosphorylation status of the 27 kDa heat shock protein (HSP27) associated with the modulation of growth and/or differentiation in MCF-7 cells. Cell Prolif 30:21–35

    Article  PubMed  CAS  Google Scholar 

  • Hsu FF, Lin TY, Chen JY, Shieh SY (2010) p53-mediated transactivation of LIMK2b links actin dynamics to cell cycle checkpoint control. Oncogene 29:2864–2876

    Article  PubMed  CAS  Google Scholar 

  • Huang HD, Lee TY, Tseng SW, Horng JT (2005) KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res 33:W226–W229

    Article  PubMed  CAS  Google Scholar 

  • Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56:273–279

    PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Jonak C, Mildner M, Klosner G, Paulitschke V, Kunsfeld R, Pehamberger H, Tschachler E, Trautinger F (2011) The hsp27kD heat shock protein and p38-MAPK signaling are required for regular epidermal differentiation. J Dermatol Sci 61:32–37

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Brunsting JF, Stege GJ, Konings AW, Landry J (1994) cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 204:1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Elf S, Lythgoe K, Hitosugi T, Tauton J, Zhou W, Xiong L, Wang D, Muller S, Fan S, Sun SY, Marcus AI, Gu TL, Polakiewicz RD, Chen Z, Khuri FR, Shin DM, Chen, J (2010) P90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. J Clin Invest 120:1165–117

    Article  PubMed  CAS  Google Scholar 

  • Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW (2003) The human genome encodes 10 α-crystallin-related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8:53–61

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Hasegawa K, Goto S, Inaguma Y (1994) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein hsp27. J Biol Chem 269:11274–11278

    PubMed  CAS  Google Scholar 

  • Kato H, Takai, S, Matsushima-Nishiwaki R, Adachi S, Minamitani C, Otsuka T, Tokuda H, Akamatsu S, Doi T, Ogura S, Kozawa O (2008) HSP27 phosphorylation is correlated with ADP-induced platelet granule secretion. Arch Biochem Biophys 475:80–86

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Adachi S, Doi T, Matsushima-Nishiwaki R, Minamitani C, Akamatsu S, Enomoto Y, Tokuda H, Otsuka T, Iwama T, Kozawa O, Ogura S (2010) Mechanism of collagen-induced release of 5-HT, PDGF-AB and sCD40 L from human platelets: role of HSP27 phosphorylation via p44/p42 MAPK. Thromb Res 126:39–43

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Adachi S, Matsushima-Nishiwaki R, Minamitani C, Natsume H, Katagiri Y, Hirose Y, Mitzutani J, Tokuda H, Kozawa O, Otsuka T (2011) Regulation by heat shock protein 27 of osteocalcin synthesis in osteblasts. Endocrinol 152:1872–1882

    Article  CAS  Google Scholar 

  • Khalili AA, Kabapy NF, Deraz SF, Smith C (2011) Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochem Biophys Acta 1816:89–104

    Google Scholar 

  • Kim MS, Kewalramani G, Puthanveetil P, Lee V, Kumar U, An D, Abramani A, Rodrigues B (2008a) Acute diabetes moderates trafficking of cardiac lipoprotein lipase through p38 mitogen-activated protein kinase-dependent actin cytoskeleton organization. Diabetes 57:64–76

    Article  CAS  Google Scholar 

  • Kim MS, Wang F, Puthanveetil P, Kewalramani G, Hosseini-Beheshti E, Ng N, Wang Y, Kumar U, Innis S, Proud CG, Abramani A, Rodrigues B (2008b) Protein kinase D is a key regulator of cardiomyocyte lipoprotein lipase secretion after diabetes. Circ Res 103:252–260

    Article  CAS  Google Scholar 

  • Knapinska AM, Gratacós FM, Krause CD, Hernandez K, Jensen AG, Bradley JJ, Wu X, Pestka S, Brewer G (2011) Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol Cell Biol 31:1419–1431

    Article  PubMed  CAS  Google Scholar 

  • Knauf U, Jakob U, Engel K, Buchner J, Gaestel M (1994) Stress- and mitogen-induced phosphorylation of the small heat shock protein Hsp25 by MAPKAP kinase 2 is not essential for chaperine properties and cellular thermoresistance. EMBO J 13:54–60

    PubMed  CAS  Google Scholar 

  • Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66:3289–3307

    Article  PubMed  CAS  Google Scholar 

  • Kostenko S, Johannessen M, Moens U (2009) PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cell Signal 21:712–718

    Article  PubMed  CAS  Google Scholar 

  • Krueger-Naug AM, Plumier JC, Hopkins DA, Currie RW (2002) Hsp27 in the nervous system: expression in pathophysiology and in the aging brain. Prog Mol Subcell Biol 28:235–251

    Article  PubMed  CAS  Google Scholar 

  • Laimer M, Kocher T, Chiocchetti A, Trost A, Lottspeich F, Richter K, Hintner H, Bauer JW, Onder K (2010) Proteomic profiling reveals a catalogue of new candidate proteins for human skin aging. Exp Dermatol 19:912–928

    Article  PubMed  CAS  Google Scholar 

  • Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto CH, Helenowski I, Pelling JC, Bergan RC (2008) Dietry genistein inhibits metastasis of human prostate cancer in mice. Cancer Res 68:2024–2032

    Article  PubMed  CAS  Google Scholar 

  • Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) Hsp27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385

    Article  PubMed  CAS  Google Scholar 

  • Lamont KR, Tindall DJ (2011) Minireview: alternative activation pathways for the androgen receptor in prostate cancer. Mol Endocrinol 25:897–907

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Huot J (1999) Regulation of actin dynamics by stress-activated protein kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa (Hsp27). Biochem Soc Symp 64:79–89

    PubMed  CAS  Google Scholar 

  • Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C (2007) Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1:53–60

    Article  PubMed  Google Scholar 

  • Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR (2000) Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol 20:4265–4274

    Article  PubMed  CAS  Google Scholar 

  • Lavoie JN, Hickey E, Weber LA, Landry J (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210–24214

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15:505–516

    PubMed  CAS  Google Scholar 

  • Lee JW, Kwak HJ, Lee JJ, Kim YN, Lee JW, Park MJ, Jung SE, Hong SI, Lee JH, Lee JS (2008) HSP27 regulates cell adhesion and invasion via modulation of focal adhesion kinase and MMP-2 expression. Eur J Cell Biol 87:377–387

    Article  PubMed  CAS  Google Scholar 

  • Lee HE, Berkowitz P, Jolly PS, Diaz LA, Chun MP, Rubenstein DS (2009) Biphasic activation of p38MAPK suggests that apoptosis is a downstream event in pemphigus acantholysis. J Biol Chem 284:12524–12532

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim JN, Lee HK, Yoon KS, Shin KD, Kwon BM, Han DC (2011) Biological evaluation of KRIBB3 analogs as a microtubule polymerization inhibitor. Bioorg Med Chem Lett 21:977–979

    Article  PubMed  CAS  Google Scholar 

  • Leja-Szpak A, Jaworek J, Szklarczyk J, Konturek SJ, Pawlik WW (2007) Melatonin stimulates HSP27 phosphorylation in human pancreatic carcinoma cells (PANC-1). J Physiol Pharmacol 58(Suppl 3):177–188

    PubMed  Google Scholar 

  • Lelj-Garolla B, Mauk AG (2005) Self-association of a small heat shock protein. J Mol Biol 345:631–642

    Article  PubMed  CAS  Google Scholar 

  • Levin EG, Santell L (1991) Phosphorylation of an Mr = 29,000 protein by IL-1 is susceptible to partial down-regulation after endothelial cell activation. J Immunol 146:3772–3778

    PubMed  CAS  Google Scholar 

  • Li L, Sevinsky JR, Rowland MD, Bundy JL, Stephenson JL, Sherry B (2010) Proteomic analysis reveals virus-specific Hsp25 modulation in cardiac myocytes. J Proteome Res 9:2460–2471

    Article  PubMed  CAS  Google Scholar 

  • Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM et al (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129:1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Guevara OE, Warburton RR, Hill NS, Gaestel M, Kayyali US (2009) Modulation of HSP27 hypoxia-induced endothelial permeability and related signalling pathways. J Cell Physiol 220:600–610

    Article  PubMed  CAS  Google Scholar 

  • Loktionova SA, Kabakov AE (1998) Protein phosphatase inhibitors and heat preconditioning prevent Hsp27 dephosphorylation, F-actin disruption and deterioration of morphology in ATP-depleted endothelial cells. FEBS Lett 433:294–300

    Article  PubMed  CAS  Google Scholar 

  • Lopes LB, Flynn C, Komalavilas P, Panitch A, Brophy CM, Seal BL (2009) Inhibition of Hsp27 phosphorylation by a cell-permeant MAPKAP kinase 2 inhibitor. Biochem Biophys Res Commun 382:535–539

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  • Mathew SS, Della Selva MP, Burch AD (2009) Modification and reorganization of the cytoprotective cellular chaperone Hsp27 during herpes simplex virus type 1 infection. J Virol 83:9304–9312

    Article  PubMed  CAS  Google Scholar 

  • Matsushima-Nishiwaki R, Takai S, Adachi S, Minamitani C, Yasuda E, Noda T, Kato K, Toyoda, H, Kaneoka Y, Yamaguchi A, Kumada T, Kozawa O (2008) Phosphorylated heat shock protein 27 represses growth of hepatocellular carcinoma via inhibition of extracellular signal-regulated kinase. J Biol Chem 283:18852–18860

    Article  PubMed  CAS  Google Scholar 

  • Matt P, Fu Z, Carrel T, Huso DL, Dirnhofer S, Lefkovits I, Zerkowski HR, Van Eyk JE (2007) Proteomic alterations in heat shock protein 27 and identification of phosphoproteins in ascending aortic aneurysm associated with bicuspid and tricuspid aortic valve. J Mol Cell Cardiol 43:792–801

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Hickey E, Weber LA, Arrigo AP (1997) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNF alpha in NIH-3t3-ras cells. Biochem Biophys Res Commun 241:187–192

    Article  PubMed  CAS  Google Scholar 

  • Melle C, Ernst G, Escher N, Hartmann D, Schimmel B, Bleul A, Thieme H, Kaufmann R, Felix K, Friess HM, Settmacher U, Hommann M, Richter KK, Daffner W, Täubig H, Manger T, Claussen U, von Eggeling F (2007) Protein profiling of microdissected pancreas carcinoma and identification of HSP27 as a potential serum marker. Clin Chem 53:629–635

    Article  PubMed  CAS  Google Scholar 

  • Michishita M, Satoh M, Yamaguchi M, Hirayoshi K, Okuma M, Nagata K (1991) Phosphorylation of the stress protein hsp27 is an early event in murine myelomonocytic leukemic cell differentiation induced by leukemia inhibitory factor/D-factor. Biochem Biophys Res Commun 176:979–984

    Article  PubMed  CAS  Google Scholar 

  • Morris JK, Bomhoff GL, Stanford JA, Geiger PC (2010) Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol 299:R1082–R1090

    Article  PubMed  CAS  Google Scholar 

  • Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918

    Article  PubMed  CAS  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176

    Article  PubMed  CAS  Google Scholar 

  • Nakatsue T, Katoh I, Nakamura S, Takahashi Y, Ikawa Y, Yoshinaka Y (1998) Acute infection of Sindbis virus induces phosphorylation and intracellular translocation of small heat shock protein HSP27 and activation of p38 MAP kinase signaling pathway. Biochem Biophys Res Commun 253:59–64

    Article  PubMed  CAS  Google Scholar 

  • Nishio M, Endo T, Tsukada N, Ohata J, Kitada S, Reed JC, Zvaifler NJ, Kipps TJ (2005) Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SFD-1alpha. Blood 106:1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Nomura N, Nomura M, Sugiyama K, Hamada JI (2007) Phorbol 12-myristate 13-acetate (PMA)-induced migration of glioblastoma cells is mediated via p38MAPK/Hsp27 pathway. Biochem Pharmacol 74:690–701

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan-Sunol C, Gabai VL, Sherman MY (2007) Hsp27 modulates p53 signaling and suppresses cellular senescence. Cancer Res 67:11779–11788

    Article  PubMed  CAS  Google Scholar 

  • O’Hayre M, Salange CL, Kipps TJ, Messmer D, Dorrestein PC, Handel TM (2010) Elucidating the CXCL12/CXCR4 signaling network in chronic lymphocytic leukemia through phosphoproteomics analysis. PLoS One 5:e111716

    Google Scholar 

  • Olsen JV, Vermeulen M, Snatamaria A, Kumar C, Miller ML, Jensen LJ et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3

    Article  PubMed  CAS  Google Scholar 

  • Orejuela D, Bergeron A, Morrow G, Tanguay, RM (2007) Small heat shock proteins in physiological and stress-related processes. In: Calderwood SK (ed) Cell stress proteins, vol 7. Springer, New York, pp 143–177

    Chapter  Google Scholar 

  • Panasenko OO, Kim MV, Marston SB, Gusev NB (2003) Interaction of the small heat shock protein with molecular mass 25 kDa (hsp25) with actin. Eur J Biochem 270:892–901

    Article  PubMed  CAS  Google Scholar 

  • Parcellier A, Brunet M, Schmitt E, Col E, Didelot C, Hammann A, Nakayama K, Nakayama KI, Khochbin S, Solary E, Garrido C (2006) HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. FASEB J 20:1179–1181

    Article  PubMed  CAS  Google Scholar 

  • Park KJ, Gaynor RB, Kwak YT (2003) Heat shock protein 27 association with the IκB kinase complex regulates tumor necrosis factor α-induced NF-κB activation. J Biol Chem 278:35272–35278

    Article  PubMed  CAS  Google Scholar 

  • Park HK, Park EC, Bae SW, Park MY, Kim SW, Yoo HS, Tudev M, Ko YH, Choi YH, Kim S, Kim DI, Kim YW, Lee BB, Yoon JB, Park JE (2006) Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein in patient with acute coronary syndrome. Circulation 114:886–893

    Article  PubMed  CAS  Google Scholar 

  • Park JK, Ronkina N, Höft A, Prohl C, Menne J, Gaestel M, Haller H, Meier M (2008) Deletion of MK2 signalling in vivo inhibits small Hsp phosphorylation but not diabetic nephropathy. Nephrol Dial Transplant 23:1844–1853

    Article  PubMed  CAS  Google Scholar 

  • Paul C, Simon S, Gilbert B, Virot S, Manero F, Arrigo AP (2010) Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27). Exp Cell Res 316:1535–1552

    Article  PubMed  CAS  Google Scholar 

  • Pichon S, Bryckaert M, Berrou E (2004) Control of actin dynamics by p38 MAP kinase- Hsp27 distribution in the lamellipodium of smooth muscle cells. J Cell Sci 117:2569–2577

    Article  PubMed  CAS  Google Scholar 

  • Piotrowicz RS, Hickey E, Levin EG (1998) Heat shock protein 27 kDa expression and phosphorylation regulates endothelial cell migration. FASEB J 12:1481–1490

    PubMed  CAS  Google Scholar 

  • Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI, Gusev NB (2005) Effects of small heat shock proteins on the thermal denaturation and aggregation of F-actin. Biochem Biophys Res Commun 331:1548–1553

    Article  PubMed  CAS  Google Scholar 

  • Pivovarova AV, Chebotareva NA, Chernik IS, Gusev NB, Levitsky DI (2007) Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. FEBS J 274:5937–5948

    Article  PubMed  CAS  Google Scholar 

  • Robinson AA, Dunn MJ, McCormack A, dos Remendios C, Rose ML (2010) Protective effect of phosphorylated hsp27 in coronary artereis through actin stabilization. J Mol Cell Cardiol 49:370–379

    Article  PubMed  CAS  Google Scholar 

  • Robitaille H, Simard-Bisson C, Larouche D, Tanguay RM, Blouin R, Germain L (2010) The small heat-shock protein Hsp27 undergoes ERK-dependent phosphorylation and redistribution to the cytoskeleton in response to dual zipper-bearing kinase expression. J Invest Dermatol 130:74–85

    Article  PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  PubMed  CAS  Google Scholar 

  • Rubin CI, Atweh GF (2004) The role of stathmin in the regulation of the cell cycle. J Cell Biochem 93:242–250

    Article  PubMed  CAS  Google Scholar 

  • Rui Z, Jian-Guo J, Yuang-Peng T, Hai P, Bing-Gen R (2003) Use of serological proteomic methods to find biomarkers associated with breast cancer. Proteomics 3:433–439

    Article  PubMed  Google Scholar 

  • Salinthone S, Ba M, Hanson L, Martin JL, Halayko AJ, Gerthoffer WT (2007) Overexpression of human Hsp27 inhibits serum-induced proliferation in airway smooth muscle monocytes and confers resistance to hydrogen peroxide cytotoxicity. Am J Physiol Lung Cell Mol Physiol 293:L1194–L1207

    Article  PubMed  CAS  Google Scholar 

  • Schneider GB, Hamano H, Cooper LF (1998) In vivo evaluation of hsp27 as an inhibitor of actin polymerization: hsp27 limits actin stress fiber and focal adhesion formation after heat shock. J Cell Physiol 177:575–584

    Article  PubMed  CAS  Google Scholar 

  • Shi B, Grahn JC, Reilly DA, Dizon TC, Isseroff RR (2008a) Responses of the 27-kDa heat shock protein to UVB irradiation in human epidermal melanocytes. Exp Dermatol 17:108–114

    Article  CAS  Google Scholar 

  • Shi GX, Jin L, Andres DA (2008b) Pituitary adenylate cyclase-activating polypeptide 38-mediated Rin activation requires Src and contributes to the regulation of HSP27 signaling during neuronal differentiation. Mol Cell Biol 28:4940–4051

    Article  CAS  Google Scholar 

  • Shin KD, Lee M-Y, Shin D-S, Lee S, Son K-H, Koh S, Paik Y-Y, Kwon B-M, Han DC (2005) Blocking tumor cell migration and invasion with biphenyl isoxazole derivative KRIBB3, a synthetic molecule that inhibits Hsp27 phosphorylation. J Biol Chem 280:41439–41448

    Article  PubMed  CAS  Google Scholar 

  • Shiryaev A, Dimitriu G, Moens U (2011) Distinct roles of MK2 and MK5 in cAMP/PKA- and stress/p38MAPK-induced heat shock protein 27 phosphorylation. J Mol Signal 6:4

    Article  PubMed  CAS  Google Scholar 

  • Singh D, McCann KL, Imani F (2007) MAPK and heat shock protein 27 activation are associated with respiratory syncytial virus induction of human bronchial epithelial monolayer disruption. Am J Physiol Lung Cell Mol Physiol 293:L436–L445

    Article  PubMed  CAS  Google Scholar 

  • Smoyer WE, Gupta A, Mundel P, Ballew, JD, Welsh MJ (1996) Altered expression of glomerular heat shock protein 27 in experimental nephrotic syndrome. J Clin Invest 97:2697–2704

    Article  PubMed  CAS  Google Scholar 

  • Spector NL, Mehlen P, Ryan C, Hardly L, Samson W, Levine H, Nadler LM, Fabre N, Arrigo AP (1994) Regulation of the 28 kDa heat shock protein by retinoic acid during differentiation of human leukemic HL-60 cells. FEBS Lett 337:184–188

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Welsh MJ, Benndorf R (2006) Conformational changes resulting from pseudophosphorylation of mammalian small heat shock proteins—a two-hybrid study. Cell Stress Chaperones 11:61–70

    Article  PubMed  CAS  Google Scholar 

  • Tanabe K, Takai R, Kato K, Dohi S, Kozawa O (2008) Alpha2 adrenoreceptor agonist regulates protein kinase C-induced heat shock protein 27 phosphorylation in C6 glioma cells. J Neurochem 106:519–528

    Article  PubMed  CAS  Google Scholar 

  • Tanabe K, Matsushima-Nishiwaki R, Dohi S, Kozawa O (2010) Phosphorylation status of heat shock protein 27 regulates the interleukin-1b-induced interleukin-6 synthesis in C6 glioma cells. Neuroscience 170:1028–1034

    Article  PubMed  CAS  Google Scholar 

  • Tar K, Csortos C, Czikora I, Olah G, Ma SF, Wadgaonkar R, Gergely P, Garcia JG, Verin AD (2006) Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. J Cell Biochem 98:931–953

    Article  PubMed  CAS  Google Scholar 

  • Thériault JR, Lambert H, Chávez-Zobel AT, Charest G, Lavigne P, Landry J (2004) Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem 279:23463–23471

    Article  PubMed  CAS  Google Scholar 

  • Tremolada L, Magni F, Valsecchi C, Sarto C, Mocarelli P, Perego R, Cordani N, Favini P, Kienle MG, Sanchez JC, Hochstrasser D, Corthals GL (2005) Characterization of heat shock protein 27 phosphorylation sites in renal cell carcinoma. Proteomics 5:788–795

    Article  PubMed  CAS  Google Scholar 

  • Trott D, McManus CA, Martin JL, Brennan B, Dunn MJ, Rose ML (2009) Effect of phosphorylated hsp27 on proliferation of human endothelial and smooth muscle cells. Proteomics 9:3383–3394

    Article  PubMed  CAS  Google Scholar 

  • Tzivion G, Luo ZJ, Avruch J (2000) Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo. J Biol Chem 275:29772–29778

    Article  PubMed  CAS  Google Scholar 

  • Uddin S, Ah-Kang J, Ulaszek J, Mahmud D, Wickrema A (2004) Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells. Proc Natl Acad Sci U S A 101:147–152

    Article  PubMed  CAS  Google Scholar 

  • Uhlen M, Oksvold P, Fagerberg L et al (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 12:1248–1250

    Article  CAS  Google Scholar 

  • Venkatakrishnan CD, Dunsmore K, Wong H, Roy S, Sen SK, Wani A, Zweier JL, Ilangovan G (2008) HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol 294:H1736–H1744

    Article  PubMed  CAS  Google Scholar 

  • Vidyasagar A, Reese S, Acun Z, Hullett D, Djamali A (2008) Hsp27 is involved in the pathogenesis of kidney tubulointerstitial fibrosis. Am J Physiol Renal Physiol 295:F707–F716

    Article  PubMed  CAS  Google Scholar 

  • Villafan-Bernal JR, Sanchez-Enriquez S, Muñoz-Valle JF (2011) Molecular modulation of osteocalcin and its relevante in diabetes. Int J Mol Med 28:283–293

    PubMed  CAS  Google Scholar 

  • Vos MJ, Hagemand J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7011

    Article  PubMed  CAS  Google Scholar 

  • Wang RE, Kao JL, Hilliard CA, Pandita RK, Roti Roti JL, Hunt CR, Taylor JS (2009) Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. J Med Chem 52:1912–1921

    Article  PubMed  CAS  Google Scholar 

  • Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:1477–1486

    Article  PubMed  CAS  Google Scholar 

  • Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B, Thornton CA (2004) Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women. Exp Gerontol 39:369–377

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Gen 11:1137–1151

    Article  PubMed  CAS  Google Scholar 

  • Wong JW, Shi B, Farboud B, McClaren M, Shibamoto T, Cross CE, Isseroff RR (2000) Ultraviolet B-mediated phosphorylation of the small heat shock protein HSP27 in human keratinocytes. J Invest Dermatol 115:427–434

    Article  PubMed  CAS  Google Scholar 

  • Wong LL, Zhang D, Chang CF, Koay ES (2010) Silencing of the PP2A catalytic subunit causes HER-2/neu positive breast cancer cells to undergo apoptosis. Exp Cell Res 316:3387–3396

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Chen S, Bergan RC (2006) MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 18:2987–2998

    Article  CAS  Google Scholar 

  • Yamaguchi T, Arai H, Katayama N, Ishikawa T, Kikumoto K, Atomi Y (2007) Age-related increase of insoluble, phosphorylated small heat shock proteins in human skeletal muscle. J Gerontol A Biol Sci Med Sci 62:481–489

    Article  PubMed  Google Scholar 

  • Yang F, Stenoien DL, Strittmatter EF, Wang J, Ding L, Lipton MS et al (2006) Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res 5:1252–1260

    Article  PubMed  CAS  Google Scholar 

  • Yasuda E, Kumada T, Takai S, Ishisaki A, Noda T, Matsushima-Nishiwaki R, Yoshimi N, Kato K, Toyoda H, Kaneoka Y, Yamaguchi A, Kozawa O (2005) Attenuated phosphorylation of heat shock protein 27 correlates with tumor progression in patients with hepatocellular carcinoma. Biochem Biophys Res Commun 337:337–342

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Wong LL, Koay ESC (2007) Phosphorylation of Ser78 of Hsp27 correlates with HER-2/neu status and lymph node positivity in breast cancer. Mol Cancer 6:52

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, O’Neill S, Saklatvala J, Tassi L, Mendelsohn ME (1994a) Phosphorylated HSP27 associates with the activation-dependent cytoskeleton in human platelets. Blood 84:3715–3723

    CAS  Google Scholar 

  • Zhu Y, Tassi L, Lane W, Mendelsohn ME (1994b) Specific binding of the transglutaminase, platelet factor XIII, to HSP27. J Biol Chem 269:22379–22384

    CAS  Google Scholar 

  • Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, Nelson C, Gleave M (2007) Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67:10455–10465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Moens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moens, U., Kostenko, S. (2012). Hsp27 Phosphorylation Patterns and Cellular Consequences. In: Henderson, B., Pockley, A. (eds) Cellular Trafficking of Cell Stress Proteins in Health and Disease. Heat Shock Proteins, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4740-1_4

Download citation

Publish with us

Policies and ethics