Skip to main content

Calcium Signaling in Glioma Cells – The Role of Nucleotide Receptors

  • Chapter
  • First Online:
Glioma Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 986))

Abstract

Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present Chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y1 and P2Y12 nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

GPCR:

G-protein coupled receptor

IP3 :

Inositol 1,4,5-trisphosphate

IP3R:

IP3 receptor

2MeSADP:

2-Methylthio ADP

MLC:

Myosin light chain

NCX:

Sodium/calcium exchanger

PI3K:

Phosphatidylinositol 3-kinase PIP2Phosphatidylinositol 4,5-biphosphate

PLC:

Phospholipase C

PM:

Plasma membrane

PMCA:

Plasma membrane calcium ATPase

PSF:

Point spread function

RyR:

Ryanodine receptor

SERCA:

Sarco/endoplasmic reticulum calcium ATPase

SOC:

Store-operated channel

SOCE:

Store-operated calcium entry

STIM1,2:

Stromal interaction molecule 1,2

TRP channel:

Transient receptor potential channel

TRPA:

Ankyrin transient receptor potential channel

TRPC:

Canonical transient receptor potential channel

TRPM:

Melastatin transient receptor potential channel

TRPV:

Vanilloid transient receptor potential channel

VGCC:

Voltage-gated calcium channel

References

  • Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E (2002) Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22:9430–9444

    PubMed  CAS  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    PubMed  CAS  Google Scholar 

  • Allen NJ, Barres BA (2009) Neuroscience: glia – more than just brain glue. Nature 457:675–677

    PubMed  CAS  Google Scholar 

  • Bach G (2005) Mucolipin 1: endocytosis and cation channel–a review. Pflugers Arch 451:313–317

    PubMed  CAS  Google Scholar 

  • Bae YS, Cantley LG, Chen CS, Kim SR, Kwon KS, Rhee SG (1998) Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:4465–4469

    PubMed  CAS  Google Scholar 

  • Baranska J, Przybylek K, Sabala P (1999) Capacitative calcium entry. Glioma C6 as a model of nonexcitable cells. Pol J Pharmacol 51:153–162

    PubMed  CAS  Google Scholar 

  • Baranska J, Czajkowski R, Sabala P (2004) Cross-talks between nucleotide receptor-induced signaling pathways in serum-deprived and non-starved glioma C6 cells. Adv Enzyme Regul 44:219–232

    PubMed  CAS  Google Scholar 

  • Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci U S A 108:2563–2568

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1995) Capacitative calcium entry. Biochem J 312(Pt 1):1–11

    PubMed  CAS  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    PubMed  CAS  Google Scholar 

  • Bianco F, Fumagalli M, Pravettoni E, D’Ambrosi N, Volonte C, Matteoli M, Abbracchio MP, Verderio C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev 48:144–156

    PubMed  CAS  Google Scholar 

  • Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Putney JW Jr (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729

    PubMed  CAS  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    PubMed  CAS  Google Scholar 

  • Burnstock G (2006) Purinergic signalling–an overview. Novartis Found Symp 276:26–48, discussion 48–57, 275–281

    PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372

    PubMed  CAS  Google Scholar 

  • Calloway N, Vig M, Kinet JP, Holowka D, Baird B (2009) Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 20:389–399

    PubMed  CAS  Google Scholar 

  • Caltabiano R, Torrisi A, Condorelli D, Albanese V, Lanzafame S (2010) High levels of connexin 43 mRNA in high grade astrocytomas. Study of 32 cases with in situ hybridization. Acta Histochem 112:529–535

    PubMed  CAS  Google Scholar 

  • Carafoli E, Stauffer T (1994) The plasma membrane calcium pump: functional domains, regulation of the activity, and tissue specificity of isoform expression. J Neurobiol 25:312–324

    PubMed  CAS  Google Scholar 

  • Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18:4637–4645

    PubMed  CAS  Google Scholar 

  • Cavaliere F, Dinkel K, Reymann K (2005) Microglia response and P2 receptor participation in oxygen/glucose deprivation-induced cortical damage. Neuroscience 136:615–623

    PubMed  CAS  Google Scholar 

  • Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354

    PubMed  CAS  Google Scholar 

  • Clapham DE (2007) SnapShot: mammalian TRP channels. Cell 129:220

    PubMed  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M (1998) Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18:2520–2537

    PubMed  CAS  Google Scholar 

  • Covington ED, Wu MM, Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21:1897–1907

    PubMed  CAS  Google Scholar 

  • Czajkowski R, Baranska J (2002) Cross-talk between the ATP and ADP nucleotide receptor signalling pathways in glioma C6 cells. Acta Biochim Pol 49:877–889

    PubMed  CAS  Google Scholar 

  • Czajkowski R, Lei L, Sabala P, Baranska J (2002) ADP-evoked phospholipase C stimulation and adenylyl cyclase inhibition in glioma C6 cells occur through two distinct nucleotide receptors, P2Y(1) and P2Y(12). FEBS Lett 513:179–183

    PubMed  CAS  Google Scholar 

  • Czajkowski R, Banachewicz W, Ilnytska O, Drobot LB, Baranska J (2004) Differential effects of P2Y1 and P2Y12 nucleotide receptors on ERK1/ERK2 and phosphatidylinositol 3-kinase signalling and cell proliferation in serum-deprived and nonstarved glioma C6 cells. Br J Pharmacol 141:497–507

    PubMed  CAS  Google Scholar 

  • Daniel JL, Dangelmaier C, Jin J, Ashby B, Smith JB, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 273:2024–2029

    PubMed  CAS  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    PubMed  CAS  Google Scholar 

  • Dean GE, Fishkes H, Nelson PJ, Rudnick G (1984) The hydrogen ion-pumping adenosine triphosphatase of platelet dense granule membrane. Differences from F1F0- and phosphoenzyme-type ATPases. J Biol Chem 259:9569–9574

    PubMed  CAS  Google Scholar 

  • Dixon DA, Haynes DH (1989) Kinetic characterization of the Ca2  +  −pumping ATPase of cardia sarcolemma in four states of activation. J Biol Chem 264:13612–13622

    PubMed  CAS  Google Scholar 

  • Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14

    PubMed  CAS  Google Scholar 

  • Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, Schlessinger J (1998) Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J 17:414–422

    PubMed  CAS  Google Scholar 

  • Finkbeiner S (1992) Calcium waves in astrocytes-filling in the gaps. Neuron 8:1101–1108

    PubMed  CAS  Google Scholar 

  • Fox SC, Behan MW, Heptinstall S (2004) Inhibition of ADP-induced intracellular Ca2+ responses and platelet aggregation by the P2Y12 receptor antagonists AR-C69931MX and clopidogrel is enhanced by prostaglandin E1. Cell Calcium 35:39–46

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Protasi F (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev 77:699–729

    PubMed  CAS  Google Scholar 

  • Freichel M, Vennekens R, Olausson J, Hoffmann M, Muller C, Stolz S, Scheunemann J, Weissgerber P, Flockerzi V (2004) Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models. Biochem Biophys Res Commun 322:1352–1358

    PubMed  CAS  Google Scholar 

  • Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS, Nelson SF (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64:6503–6510

    PubMed  CAS  Google Scholar 

  • Fry T, Evans JH, Sanderson MJ (2001) Propagation of intercellular calcium waves in C6 glioma cells transfected with connexins 43 or 32. Microsc Res Tech 52:289–300

    PubMed  CAS  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287

    PubMed  CAS  Google Scholar 

  • Golovina VA (2005) Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564:737–749

    PubMed  CAS  Google Scholar 

  • Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493–21501

    PubMed  CAS  Google Scholar 

  • Grimm C, Kraft R, Schultz G, Harteneck C (2005) Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine [corrected]. Mol Pharmacol 67:798–805

    PubMed  CAS  Google Scholar 

  • Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H (2001) Agonists of the P2Y(AC)-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 78:1325–1338

    PubMed  CAS  Google Scholar 

  • Gruszczynska-Biegala J, Pomorski P, Wisniewska MB, Kuznicki J (2011) Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLoS One 6:e19285

    PubMed  CAS  Google Scholar 

  • Gualix J, Pintor J, Miras-Portugal MT (1999) Characterization of nucleotide transport into rat brain synaptic vesicles. J Neurochem 73:1098–1104

    PubMed  CAS  Google Scholar 

  • Gwack Y, Srikanth S, Oh-Hora M, Hogan PG, Lamperti ED, Yamashita M, Gelinas C, Neems DS, Sasaki Y, Feske S, Prakriya M, Rajewsky K, Rao A (2008) Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol 28:5209–5222

    PubMed  CAS  Google Scholar 

  • Gyoneva S, Orr AG, Traynelis SF (2009) Differential regulation of microglial motility by ATP/ADP and adenosine. Parkinsonism Relat Disord 15(Suppl 3):S195–S199

    PubMed  Google Scholar 

  • Hakamata Y, Nakai J, Takeshima H, Imoto K (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312:229–235

    PubMed  CAS  Google Scholar 

  • Hamilton SL (2005) Ryanodine receptors. Cell Calcium 38:253–260

    PubMed  CAS  Google Scholar 

  • Hao L, Rigaud JL, Inesi G (1994) Ca2+/H  +  countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca-ATPase and exogenous lipids. J Biol Chem 269:14268–14275

    PubMed  CAS  Google Scholar 

  • Hardy AR, Jones ML, Mundell SJ, Poole AW (2004) Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 104:1745–1752

    PubMed  CAS  Google Scholar 

  • Hartline DK (2011) The evolutionary origins of glia. Glia 59:1215–1236

    PubMed  Google Scholar 

  • Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar WH, Matsumura F, Maekawa M, Bito H, Narumiya S (1998) Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol 141:1625–1636

    PubMed  CAS  Google Scholar 

  • Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    PubMed  CAS  Google Scholar 

  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    PubMed  CAS  Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    PubMed  CAS  Google Scholar 

  • Huang C, Hu ZL, Wu WN, Yu DF, Xiong QJ, Song JR, Shu Q, Fu H, Wang F, Chen JG (2010) Existence and distinction of acid-evoked currents in rat astrocytes. Glia 58:1415–1424

    PubMed  Google Scholar 

  • Illes P, Verkhratsky A, Burnstock G, Franke H (2011) P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist. doi:10.1177/1073858411418524 [e-pub ahead of print]

  • Imagawa T, Smith JS, Coronado R, Campbell KP (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2  +  −permeable pore of the calcium release channel. J Biol Chem 262:16636–16643

    PubMed  CAS  Google Scholar 

  • Inui M, Saito A, Fleischer S (1987a) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262:1740–1747

    PubMed  CAS  Google Scholar 

  • Inui M, Saito A, Fleischer S (1987b) Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem 262:15637–15642

    PubMed  CAS  Google Scholar 

  • James PH, Pruschy M, Vorherr TE, Penniston JT, Carafoli E (1989) Primary structure of the cAMP-dependent phosphorylation site of the plasma membrane calcium pump. Biochemistry 28:4253–4258

    PubMed  CAS  Google Scholar 

  • Jiang S, Yuan H, Duan L, Cao R, Gao B, Xiong YF, Rao ZR (2011) Glutamate release through connexin 43 by cultured astrocytes in a stimulated hypertonicity model. Brain Res 1392:8–15

    PubMed  CAS  Google Scholar 

  • Jin J, Tomlinson W, Kirk IP, Kim YB, Humphries RG, Kunapuli SP (2001) The C6-2B glioma cell P2Y(AC) receptor is pharmacologically and molecularly identical to the platelet P2Y(12) receptor. Br J Pharmacol 133:521–528

    PubMed  CAS  Google Scholar 

  • Joseph SM, Buchakjian MR, Dubyak GR (2003) Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 278:23331–23342

    PubMed  CAS  Google Scholar 

  • Kiedrowski L, Czyz A, Baranauskas G, Li XF, Lytton J (2004) Differential contribution of plasmalemmal Na/Ca exchange isoforms to sodium-dependent calcium influx and NMDA excitotoxicity in depolarized neurons. J Neurochem 90:117–128

    PubMed  CAS  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    PubMed  CAS  Google Scholar 

  • Korczynski J, Sobierajska K, Krzeminski P, Wasik A, Wypych D, Pomorski P, Klopocka W (2011) Is MLC phosphorylation essential for the recovery from ROCK inhibition in glioma C6 cells? Acta Biochim Pol 58:125–130

    PubMed  CAS  Google Scholar 

  • Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3:ra82

    PubMed  CAS  Google Scholar 

  • Krane SM, Glimcher MJ (1962) Transphosphorylation from nucleoside Di- and triphosphates by apatite crystals. J Biol Chem 237:2991–2998

    PubMed  CAS  Google Scholar 

  • Krzeminski P, Suplat D, Czajkowski R, Pomorski P, Baranska J (2007) Expression and functional characterization of P2Y1 and P2Y12 nucleotide receptors in long-term serum-deprived glioma C6 cells. FEBS J 274:1970–1982

    PubMed  CAS  Google Scholar 

  • Lauger P (1991) Kinetic basis of voltage dependence of the Na, K-pump. Soc Gen Physiol Ser 46:303–315

    PubMed  CAS  Google Scholar 

  • Lazarowski E (2006) Regulated release of nucleotides and UDP sugars from astrocytoma cells. Novartis Found Symp 276:73–84, discussion 84–90, 107–112, 275–181

    PubMed  CAS  Google Scholar 

  • Lazarowski ER, Shea DA, Boucher RC, Harden TK (2003) Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol 63:1190–1197

    PubMed  CAS  Google Scholar 

  • Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM (2011) Molecular mechanisms of purine and pyrimidine nucleotide release. Adv Pharmacol 61:221–261

    PubMed  CAS  Google Scholar 

  • Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    PubMed  CAS  Google Scholar 

  • Liao Z, Seye CI, Weisman GA, Erb L (2007) The P2Y2 nucleotide receptor requires interaction with alpha v integrins to access and activate G12. J Cell Sci 120:1654–1662

    PubMed  CAS  Google Scholar 

  • Linde CI, Baryshnikov SG, Mazzocco-Spezzia A, Golovina VA (2011) Dysregulation of Ca2+ signaling in astrocytes from mice lacking amyloid precursor protein. Am J Physiol Cell Physiol 300:C1502–C1512

    PubMed  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2  +  −store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    PubMed  CAS  Google Scholar 

  • McCully KS (2009) Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann Clin Lab Sci 39:219–232

    PubMed  CAS  Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    PubMed  CAS  Google Scholar 

  • Minor DL Jr, Findeisen F (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 4:459–474

    Google Scholar 

  • Moller T, Kann O, Verkhratsky A, Kettenmann H (2000) Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59

    PubMed  CAS  Google Scholar 

  • Monteith GR, Roufogalis BD (1995) The plasma membrane calcium pump–a physiological perspective on its regulation. Cell Calcium 18:459–470

    PubMed  CAS  Google Scholar 

  • Morigiwa K, Quan M, Murakami M, Yamashita M, Fukuda Y (2000) P2 Purinoceptor expression and functional changes of hypoxia-activated cultured rat retinal microglia. Neurosci Lett 282:153–156

    PubMed  CAS  Google Scholar 

  • Muik M, Fahrner M, Schindl R, Stathopulos P, Frischauf I, Derler I, Plenk P, Lackner B, Groschner K, Ikura M, Romanin C (2011) STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 30:1678–1689

    PubMed  CAS  Google Scholar 

  • Naziroglu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36:355–366

    PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    PubMed  CAS  Google Scholar 

  • Ohana L, Newell EW, Stanley EF, Schlichter LC (2009) The Ca2+ release-activated Ca2+ current (I(CRAC)) mediates store-operated Ca2+ entry in rat microglia. Channels (Austin) 3:129–139

    CAS  Google Scholar 

  • Panopoulos A, Howell M, Fotedar R, Margolis RL (2011) Glioblastoma motility occurs in the absence of actin polymer. Mol Biol Cell 22:2212–2220

    PubMed  CAS  Google Scholar 

  • Parpura V, Grubisic V, Verkhratsky A (2011) Ca(2+) sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta 1813:984–991

    PubMed  CAS  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812

    PubMed  CAS  Google Scholar 

  • Parys B, Cote A, Gallo V, De Koninck P, Sik A (2010) Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience 167:1032–1043

    PubMed  CAS  Google Scholar 

  • Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    PubMed  CAS  Google Scholar 

  • Pizzo P, Burgo A, Pozzan T, Fasolato C (2001) Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem 79:98–109

    PubMed  CAS  Google Scholar 

  • Potier M, Trebak M (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 457:405–415

    PubMed  CAS  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    PubMed  CAS  Google Scholar 

  • Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    PubMed  CAS  Google Scholar 

  • Putney JW Jr, Bird GS (1993) The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev 14:610–631

    PubMed  CAS  Google Scholar 

  • Rao JN, Platoshyn O, Golovina VA, Liu L, Zou T, Marasa BS, Turner DJ, Yuan JX, Wang JY (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol Gastrointest Liver Physiol 290:G782–G792

    PubMed  CAS  Google Scholar 

  • Ribeiro CM, Reece J, Putney JW Jr (1997) Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem 272:26555–26561

    PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    PubMed  CAS  Google Scholar 

  • Rosado JA, Jenner S, Sage SO (2000) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem 275:7527–7533

    PubMed  CAS  Google Scholar 

  • Roy P, Rajfur Z, Pomorski P, Jacobson K (2002) Microscope-based techniques to study cell adhesion and migration. Nat Cell Biol 4:E91–E96

    PubMed  CAS  Google Scholar 

  • Sabala P, Czajkowski R, Przybylek K, Kalita K, Kaczmarek L, Baranska J (2001) Two subtypes of G protein-coupled nucleotide receptors, P2Y(1) and P2Y(2) are involved in calcium signalling in glioma C6 cells. Br J Pharmacol 132:393–402

    PubMed  CAS  Google Scholar 

  • Sabala P, Targos B, Caravelli A, Czajkowski R, Lim D, Gragnaniello G, Santella L, Baranska J (2002) Role of the actin cytoskeleton in store-mediated calcium entry in glioma C6 cells. Biochem Biophys Res Commun 296:484–491

    PubMed  CAS  Google Scholar 

  • Sage SO, Yamoah EH, Heemskerk JW (2000) The roles of P(2X1)and P(2T AC)receptors in ADP-evoked calcium signalling in human platelets. Cell Calcium 28:119–126

    PubMed  CAS  Google Scholar 

  • Sak K, Illes P (2005) Neuronal and glial cell lines as model systems for studying P2Y receptor pharmacology. Neurochem Int 47:401–412

    PubMed  CAS  Google Scholar 

  • Sappington RM, Calkins DJ (2008) Contribution of TRPV1 to microglia-derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure. Invest Ophthalmol Vis Sci 49:3004–3017

    PubMed  Google Scholar 

  • Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20:1435–1445

    PubMed  CAS  Google Scholar 

  • Shin YC, Shin SY, So I, Kwon D, Jeon JH (2011) TRIP Database: a manually curated database of protein-protein interactions for mammalian TRP channels. Nucleic Acids Res 39:D356–D361

    PubMed  Google Scholar 

  • Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, Johnstone LS, Dziadek MA, Gill DL (2006) STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ Entry. Curr Biol 16:1465–1470

    PubMed  CAS  Google Scholar 

  • Sontheimer H (1994) Voltage-dependent ion channels in glial cells. Glia 11:156–172

    PubMed  CAS  Google Scholar 

  • Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284:728–732

    PubMed  CAS  Google Scholar 

  • Steinbeck JA, Henke N, Opatz J, Gruszczynska-Biegala J, Schneider L, Theiss S, Hamacher N, Steinfarz B, Golz S, Brustle O, Kuznicki J, Methner A (2011) Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Exp Neurol 232:185–194

    PubMed  CAS  Google Scholar 

  • Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, Williams RS, Eu JP, Rosenberg P (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10:688–697

    PubMed  CAS  Google Scholar 

  • Striedinger K, Scemes E (2008) Interleukin-1beta affects calcium signaling and in vitro cell migration of astrocyte progenitors. J Neuroimmunol 196:116–123

    PubMed  CAS  Google Scholar 

  • Striedinger K, Meda P, Scemes E (2007) Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia 55:652–662

    PubMed  Google Scholar 

  • Suplat D, Targos B, Sabala P, Baranska J, Pomorski P (2004) Differentiation of answer of glioma C6 cells to SERCA pump inhibitors by actin disorganization. Biochem Biophys Res Commun 323:870–875

    PubMed  CAS  Google Scholar 

  • Suplat D, Krzeminski P, Pomorski P, Baranska J (2007) P2Y(1) and P2Y(12) receptor cross-talk in calcium signalling: evidence from nonstarved and long-term serum-deprived glioma C6 cells. Purinergic Signal 3:221–230

    PubMed  CAS  Google Scholar 

  • Targos B, Pomorski P, Krzeminski P, Baranska J, Redowicz MJ, Klopocka W (2006) Effect of Rho-associated kinase inhibition on actin cytoskeleton structure and calcium response in glioma C6 cells. Acta Biochim Pol 53:825–831

    PubMed  CAS  Google Scholar 

  • Tatenhorst L, Puttmann S, Senner V, Paulus W (2005) Genes associated with fast glioma cell migration in vitro and in vivo. Brain Pathol 15:46–54

    PubMed  CAS  Google Scholar 

  • Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen’kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N (2006) Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66:2038–2047

    PubMed  CAS  Google Scholar 

  • Theis M, Sohl G, Eiberger J, Willecke K (2005) Emerging complexities in identity and function of glial connexins. Trends Neurosci 28:188–195

    PubMed  CAS  Google Scholar 

  • Van Kolen K, Slegers H (2006) Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks. Purinergic Signal 2:451–469

    PubMed  Google Scholar 

  • Van Kolen K, Gilany K, Moens L, Esmans EL, Slegers H (2006) P2Y12 receptor signalling towards PKB proceeds through IGF-I receptor cross-talk and requires activation of Src, Pyk2 and Rap1. Cell Signal 18:1169–1181

    PubMed  Google Scholar 

  • Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB (2009) Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793:959–970

    PubMed  CAS  Google Scholar 

  • Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742:21–36

    PubMed  CAS  Google Scholar 

  • Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL (2002) The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 4:E263–E272

    PubMed  CAS  Google Scholar 

  • Verkhratsky A (2006) Calcium ions and integration in neural circuits. Acta Physiol (Oxf) 187:357–369

    CAS  Google Scholar 

  • Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9:89–96

    PubMed  CAS  Google Scholar 

  • Wang M, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA (2005) P2Y nucleotide receptor interaction with alpha integrin mediates astrocyte migration. J Neurochem 95:630–640

    PubMed  CAS  Google Scholar 

  • Wang Y, Deng X, Hewavitharana T, Soboloff J, Gill DL (2008) Stim, ORAI and TRPC channels in the control of calcium entry signals in smooth muscle. Clin Exp Pharmacol Physiol 35:1127–1133

    PubMed  CAS  Google Scholar 

  • Wang D, Yan B, Rajapaksha WR, Fisher TE (2009) The expression of voltage-gated ca2+ channels in pituicytes and the up-regulation of L-type ca2+ channels during water deprivation. J Neuroendocrinol 21:858–866

    PubMed  CAS  Google Scholar 

  • Wang Y, Deng X, Gill DL (2010) Calcium signaling by STIM and Orai: intimate coupling details revealed. Sci Signal 3:pe42

    PubMed  CAS  Google Scholar 

  • Worthylake RA, Burridge K (2003) RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem 278:13578–13584

    PubMed  CAS  Google Scholar 

  • Xiao R, Xu XZ (2009) Function and regulation of TRP family channels in C. elegans. Pflugers Arch 458:851–860

    PubMed  CAS  Google Scholar 

  • Yaguchi T, Nishizaki T (2010) Extracellular high K+  stimulates vesicular glutamate release from astrocytes by activating voltage-dependent calcium channels. J Cell Physiol 225:512–518

    PubMed  CAS  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    PubMed  CAS  Google Scholar 

  • Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T, Mikoshiba K (1992) Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster. J Biol Chem 267:16613–16619

    PubMed  CAS  Google Scholar 

  • Yu X, Carroll S, Rigaud JL, Inesi G (1993) H+  countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J 64:1232–1242

    PubMed  CAS  Google Scholar 

  • Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, Xu SL, Xin YH, Yao XH, Chen JH, Chu WH, Sun W, Wang B, Wang JM, Zhang X, Bian XW (2012) Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells 30:108–120

    PubMed  CAS  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    PubMed  CAS  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103:9357–9362

    PubMed  CAS  Google Scholar 

  • Zhou Y, Mancarella S, Wang Y, Yue C, Ritchie M, Gill DL, Soboloff J (2009) The short N-terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels. J Biol Chem 284:19164–19168

    PubMed  CAS  Google Scholar 

  • Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in the Author’s Laboratory is supported by a grant NN303 070434 from the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Pomorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wypych, D., Pomorski, P. (2013). Calcium Signaling in Glioma Cells – The Role of Nucleotide Receptors. In: Barańska, J. (eds) Glioma Signaling. Advances in Experimental Medicine and Biology, vol 986. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4719-7_4

Download citation

Publish with us

Policies and ethics