Skip to main content

Agroforestry for Mine-Land Reclamation in Germany: Capitalizing on Carbon Sequestration and Bioenergy Production

  • Chapter
  • First Online:
Agroforestry - The Future of Global Land Use

Part of the book series: Advances in Agroforestry ((ADAG,volume 9))

Abstract

Surface mining operations generate significant and large-scale landscape disturbances. As a consequence, effective reclamation management is required to ensure the establishment of a sustainably productive, ecologically valuable, and economically attractive post-mining landscape. In the post-surface-mining landscape of Lower Lusatia (northeast Germany), a new land-use option during reclamation is the establishment of alley cropping systems (ACSs) producing food and woody biomass for obtaining bioenergy. The established multi-row tree strips are typically managed as short rotation coppices (SRC), for which black locust (Robinia pseudoacacia L.) is the most frequently used tree species. The alley cropping systems are promising land-use systems for mine-site reclamation because they provide a multitude of ecological and economic benefits; furthermore, within these plantations, significant amounts of carbon (C) can be accumulated in the biomass and the soil. The results of field studies on C sequestration in R. pseudoacacia stands on reclaimed mine sites within the Lusatian region indicate an average shoot dry matter (DM) production of R. pseudoacacia between 3 and 10 Mg DM ha−1 year−1 depending on the plantation age and rotation period. The DM yields for foliage biomass ranged between 12 and 32 % of the shoot biomass for 2- and 4-year-old trees. Estimates of the C storage within the soil are up to 7 Mg C ha−1 year−1 within 0–60 cm depth. In summary, the results support the hypothesis that ACS of R. pseudoacacia may be in many respects a beneficial land-use system for marginal, post-mining landscapes, with a significant C sequestration potential above- and belowground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amichev B, Burger J, Rodrigue J (2008) Carbon sequestration by forests and soils on mined land in the Midwestern and Appalachian coalfields of the U.S. For Ecol Manage 256:1949–1959. doi:10.1016/j.foreco.2008.07.020

    Article  Google Scholar 

  • Baertsche SR, Yokoyama MT, Hanover JW (1986) Short rotation, hardwood tree biomass as potential ruminant feed-chemical composition, nylon bag ruminal degradation and ensilement of selected species. J Anim Sci 63:2028–2043

    CAS  Google Scholar 

  • Banning N, Grant C, Jones D, Murphy D (2008) Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence. Soil Biol Biochem 40:2021–2031. doi:10.1016/j.soilbio.2008.04.010

    Article  CAS  Google Scholar 

  • Barrett RP, Mebrahtu T, Hanover JW (1990) Black locust: A multi-purpose tree species for temperate climates. In: Janick J, Simon J (eds) Advances in new crops – proceedings of the first national symposium new crops research, development, and economics. Timber Press, Portland, pp 278–283

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163. doi:10.1111/j.1365-2389.1996.tb01386.x

    Article  CAS  Google Scholar 

  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenerg 25:1–28. doi:10.1016/S0961-9534(02)00185-X

    Article  Google Scholar 

  • Berthold D (2005) Soil chemical and biological changes through the N2 fixation of black locust (Robinia pseudoacacia L.) – a contribution to the research of tree neophytes. Dissertation, Georg-August-Universität, Göttingen, Germany, 186 p

    Google Scholar 

  • BMELV (2009) Waldbericht der Bundesregierung 2009. Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), Berlin, 119 p

    Google Scholar 

  • BMWE (2007) Energiestrategie 2020 des Landes Brandenburg. Brandenburg Ministry of Economics and European Affairs (BMWE), Southfield, 59 p

    Google Scholar 

  • Boehmel C, Lewandowski I, Claupein W (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agric Syst 96:224–236. doi:10.1016/j.agsy.2007.08.004

    Article  Google Scholar 

  • Böhm C (2008) Erzeugung von Energieholz in Energiewäldern und Agroforstsystemen. Innovationen für Klimaschutz und wirtschaftliche Entwicklung, 2, vol 14. Rostocker Bioenergieforum, Rostock, Oktober 2008, pp 109–118

    Google Scholar 

  • Böhm C, Quinkenstein A, Freese D, Hüttl RF (2009) Wachstumsverlauf von vierjährigen Robinien. AFZ-DerWald 10:532–533

    Google Scholar 

  • Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann For Res 54(2):215–227

    Google Scholar 

  • Böhmer HJ, Heger T, Trepl L (2001) Case studies on alien species in Germany according to Decision/Section no. V/8 and V/19 of the Fifth Meeting of the conference of the parties to the convention on biological diversity. UBA-Texte 13, German Federal Environment Agency, Dessau, 126 p

    Google Scholar 

  • Boring LR, Swank WT (1984) The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72:749–766

    Article  Google Scholar 

  • Botin JA (2009) Sustainable management of mining operations. Society for Mining, Metallurgy, and Exploration (SME), Englewood, 381 p

    Google Scholar 

  • Bradshaw AD, Chadwick MJ (1980) The restoration of land – the ecology and reclamation of derelict and degraded land. University of California Press, Berkeley/Los Angeles, 317 p

    Google Scholar 

  • Brown JH (1962) Success of tree planting on strip-mined areas in West Virginia. Agricultural experiment station bulletin 473. West Virginia University, West Virginia, 35 p

    Google Scholar 

  • Brown JH, Tryon EH (1960) Establishment of seeded black locust on spoil banks series. Agricultural experiment station bulletin 440, West Virginia University, West Virginia, 34 p

    Google Scholar 

  • Bungart R (1999) Erzeugung von Biomasse zur energetischen Nutzung durch den Anbau schnellwachsender Baumarten auf Kippsubstraten des Lausitzer Braunkohlereviers. Cottbuser Schriften zu Bodenschutz und Rekultivierung 7, 163 p

    Google Scholar 

  • Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J For Res 123:105–115. doi:10.1007/s10342-004-0024-8

    CAS  Google Scholar 

  • Burgess PJ (1999) Effects of agroforestry on farm biodiversity in the UK. Scott For 53:24–27

    Google Scholar 

  • Burner DM, Pote DH, Ares A (2005) Management effects on biomass and foliar nutritive value of Robinia pseudoacacia and Gleditsia triacanthos f. inermis in Arkansas, USA. Agrofor Syst 65:207–214. doi:10.1007/s10457-005-0923-9

    Article  Google Scholar 

  • Burns RM, Honkala BH (1990) Silvics of North America: 2. Hardwoods. Agriculture handbook, vol 654. U.S. Department of Agriculture, Forest Service, Washington, DC, p 877

    Google Scholar 

  • Cao X (2007) Regulating mine land reclamation in developing countries: the case of China. Land Use Policy 24:472–483. doi:10.1016/j.landusepol.2006.07.002

    Article  Google Scholar 

  • Chatterjee R, Lal R, Shrestha RK, Ussiri DAN (2009) Soil carbon pools of reclaimed minesoils under grass and forest land uses. Land Degrad Dev 20:300–307. doi:10.1002/ldr.916

    Article  Google Scholar 

  • de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408. doi:10.1016/S0921-8009(02), 00089-7

    Article  Google Scholar 

  • DIN (2002) Deutsches Institut für Normung (German Institute for Standardization): Moisture content of a piece of sawn timber – Part 1: Determination by oven dry method; German version EN 13183–1:2002, 6 p

    Google Scholar 

  • DIN (2007) Deutsches Institut für Normung (German Institute for Standardization): Bodenbeschaffenheit: Bestimmung des Carbonatgehaltes-Volumetrisches Verfahren; DIN-ISO 10693, 6 p

    Google Scholar 

  • Dixon RK, Winjum JK, Andrasko KJ, Lee JJ, Schroeder PE (1994) Integrated land-use systems: assessment of promising agroforest and alternative land-use practices to enhance carbon conservation and sequestration. Clim Chang 27:71–92. doi:10.1007/BF01098474

    Article  CAS  Google Scholar 

  • Dupraz C, Burgess P, Gavaland A, Graves A, Herzog F, Incoll LD, Jackson N, Keesman K, Lawson G, Lecomte I, Liagre F, Mantzanas K, Mayus M, Moreno G, Palma J, Papanastasis V, Paris P, Pilbeam DJ, Reisner Y, van Noordwijk M, Vincent G, van der Werf W (2005) SAFE final report-synthesis of the silvoarable agroforestry for Europe project, INRA, Paris, 254 p

    Google Scholar 

  • EEA (2006) How much bioenergy can Europe produce without harming the environment? European Environmental Agency-Report No 7/2006, Copenhagen, 72 p

    Google Scholar 

  • Eswaran H, Berg EVD, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57(1):192–194. doi:10.2136/sssaj1993.03615995005700010034x

    Article  Google Scholar 

  • Farber S, Costanza R, Childers DL, Ericson J, Gross K, Grove M, Hopkinson CS, Kahn J, Pincetl S, Troy A, Warren P, Wilson M (2006) Linking ecology and economics for ecosystem management. BioSci 56:117–129. doi:10.1641/0006-3568(2006) 056[0121:LEAEFE]2.0.CO;2

    Article  Google Scholar 

  • Fernández-Núñez E, Rigueiro-Rodríguez A, Mosquera-Losada MR (2010) Carbon allocation dynamics one decade after afforestation with Pinus radiata D. Don and Betula alba L. under two stand densities in NW Spain. Ecol Eng 36(7):876–890. doi:10.1016/j.ecoleng.2010.03.007

    Article  Google Scholar 

  • Filcheva E, Noustorova M, Gentcheva-Kostadinova S, Haigh MJ (2000) Organic accumulation and microbial action in surface coal-mine spoils, Pernik, Bulgaria. Ecol Eng 15:1–15. doi:10.1016/S0925-8574(99)00008-7

    Article  Google Scholar 

  • Fisher B, Turner K, Morling P (2009) Defining and classifying ecosystem services for decision making. Ecol Econ 68:643–653. doi:10.1016/j.ecolecon.2008.09.014

    Article  Google Scholar 

  • FNR (2007) Daten und Fakten zu nachwachsenden Rohstoffen. Agency for Renewable Resources (FNR), Gülzow-Prüzen, 72 p

    Google Scholar 

  • Freese D, Böhm C, Quinkenstein A, Schneider BU, Hüttl RF (2010) Agroforest-flächenschonende Alternative für die Bioenergieproduktion: Feld und Wald auf einem Schlag. Neue Landwirtschaft 9:76–78

    Google Scholar 

  • Goglio P, Owende PMO (2009) A screening LCA of short rotation coppice willow (Salix sp.) feedstock production system for small-scale electricity generation. Biosyst Eng 103(3):389–394. doi:10.1016/j.biosystemseng.2009.03.003

    Article  Google Scholar 

  • Graves AR, Burgess PJ, Palma JHN, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, Koeffeman de Nooy A, van den Briel JP (2007) Development and application of bio-economic modeling to compare silvoarable, arable, and forestry systems in three European countries. Ecol Eng 29:434–449. doi:10.1016/j.ecoleng.2006.09.018

    Article  Google Scholar 

  • Grünewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328. doi:10.1016/j.ecoleng.2006.09.012

    Article  Google Scholar 

  • Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenerg Res 2:123–133. doi:10.1007/s12155-009-9038-x

    Article  Google Scholar 

  • Hanover JW (1993) Black locust: an excellent fiber crop. In: Janick J, Simon J (eds) New crops: exploration, research, and commercialization – proceedings of the second national symposium. Wiley, New York, pp 432–435

    Google Scholar 

  • Hanover JW, Mebrathu T, Bloese P (1991) Genetic improvement of black locust: a prime agroforestry species. For Chron 67:227–231

    Google Scholar 

  • HMEW (2009) Fourth national report to the convention on biological diversity – Hungary. Hungarian Ministry of Environment and Water (HMEW), Budapest, 81 p

    Google Scholar 

  • Hüttl RF (1998) Ecology of post strip-mining landscapes in Lusatia, Germany. Environ Sci Policy 1:129–135. doi:10.1016/S1462-9011(98), 00014-8

    Article  Google Scholar 

  • Hüttl RF, Weber E (2001) Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88:322–329

    Article  PubMed  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314. doi:10.2307/1390807

    Google Scholar 

  • Jastrow J, Amonette J, Bailey V (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Chang 80:5–23. doi:10.1007/s10584-006-9178-3

    Article  CAS  Google Scholar 

  • Jordan CF (2004) Organic farming and agroforestry: alley cropping for mulch production for organic farms of southeastern United States. Agrofor Syst 61:79–90. doi:10.1023/B:AGFO.0000028991.86647.35

    Article  Google Scholar 

  • Karu H, Szava-Kovats R, Pensa M, Kull O (2009) Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine. Can J For Res 39:1507–1517. doi:10.1139/X09-069

    Article  CAS  Google Scholar 

  • Katzur J, Haubold-Rosar M (1996) Amelioration and reforestation of sulfurous mine soils in Lusatia (Eastern Germany). Water Air Soil Poll 91(1):17–32. doi:10.1007/BF00280920

    Article  CAS  Google Scholar 

  • Keresztesi B (1983) Breeding and cultivation of black locust, Robinia pseudoacacia, in Hungary. For Ecol Manage 6:217–244. doi:10.1016/S0378-1127(83)80004-8

    Article  Google Scholar 

  • Klaa K, Mill PJ, Incoll LD (2005) Distribution of small mammals in a silvoarable agroforestry system in Northern England. Agrofor Syst 63:101–110. doi:10.1007/s10457-004-1110-0

    Article  Google Scholar 

  • KTBL (2006) Energiepflanzen – Datensammlung für die Planung des Energiepflanzenbaus. KTBL Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt, 370 p

    Google Scholar 

  • Kürsten E (2000) Fuelwood production in agroforestry systems for sustainable land use and CO2 mitigation. Ecol Eng 16:69–72. doi:10.1016/S0925-8574(00)00054-9

    Article  Google Scholar 

  • Kutschera L, Lichtenegger E (2002) Wurzelatlas mitteleuropäischer Waldbäume und Sträucher. Leopold Stocker, Graz, 604 p

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi:10.1126/science.1097396

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Kimble JM, Follett RF, Cole CV (1998) The potential of US cropland to sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, Ann Arbor, 128 p

    Google Scholar 

  • Maier J, Vetter R, Siegle V, Spliethoff H (1998) Anbau von Energiepflanzen – Ganzpflanzengewinnung mit verschiedenen Beerntungsmethoden (ein- und mehrjährige Pflanzenarten); Schwach­holz­verwertung. Final report of research project no. 22–94.11, Ministry of Rural Areas and Consumer Protection of the Federal State of Baden-Württemberg, Stuttgart, 100 p

    Google Scholar 

  • Matos ES, Freese D, Böhm C, Quinkenstein A, Hüttle RF (2011) Organic matter dynamics in reclaimed lignite mine soils under Robinia pseudoacacia L. of different ages in NE Germany. Commun Soil Sci Plant Anal 43(5):745–755. doi:10.1080/00103624.2012.648354

    Article  Google Scholar 

  • Mead R, Willey RW (1980) The concept of a land equivalent ratio and advantages in yields from intercropping. Exp Agric 16:217–228. doi:10.1017/S0014479700010978

    Article  Google Scholar 

  • Metting FB, Smith JL, Amthor JS, Izaurralde R (2001) Science needs and new technology for increasing soil carbon sequestration. Clim Chang 51(1):11–34. doi:10.1023/A:1017509224801

    Article  Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295. doi:10.1023/B:AGFO.0000029005.92691.79

    Article  Google Scholar 

  • Morrey D (1999) Integrated planning for environmental management during mining operations and mine closure. Miner Energy 14:12–20. doi:10.1080/14041049909362534

    Article  Google Scholar 

  • Nair PKR (2012) Climate change mitigation: a low-hanging fruit of agroforestry. In: Nair PKR, Garrity D (eds) Agroforestry: the future of global land use. Springer, Dordrecht, pp xx–xx

    Google Scholar 

  • Nair VD, Graetz DA (2004) Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: the Florida experience. Agrofor Syst 61–62:269–279. doi:10.1023/B:AGFO.0000029004.03475.1d

    Article  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23. doi:10.1002/jpln.200800030

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307. doi:10.1016/S0065-2113(10)08005-3

    Article  CAS  Google Scholar 

  • Nii-Annang S, Grünewald H, Freese D, Hüttl RF, Dilly O (2009) Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits. Biol Fertil Soils 45:531–538. doi:10.1007/s00374-009-0360-4

    Article  CAS  Google Scholar 

  • Nuberg IK (1998) Effect of shelter on temperate crops: a review to define research for Australian conditions. Agrofor Syst 41:3–34. doi:10.1023/A:1006071821948

    Article  Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human-induced soil degradation: an explanatory note. International Soil Reference and Information Centre (ISRIC), Wageningen, 35 p

    Google Scholar 

  • Ong CK, Black CR, Marschall FM (1996) Principles of resource capture and utilization of light and water. In: Ong CK, Huxley P (eds) Tree-crop interaction. A physiological approach. CAB International, Wallingford, pp 73–158

    Google Scholar 

  • Palma JHN, Graves AR, Bunce RGH, Burgess PJ, de Filippi R, Keesman KJ, van Keulen H, Liagre F, Mayus M, Moreno G, Reisner Y, Herzog F (2007) Modelling environmental benefits of silvoarable agroforestry in Europe. Agric Ecosyst Environ 119:320–334. doi:10.1016/j.agee.2006.07.021

    Article  Google Scholar 

  • Papanastasis V, Platis P, Dini-Papanastasi O (1997) Productivity of deciduous woody and fodder species in relation to air temperature and precipitation in a Mediterranean environment. Agrofor Syst 37:187–198. doi:10.1023/A:1005874432118

    Article  Google Scholar 

  • Quinkenstein A, Wöllecke J, Böhm C, Grünewald H, Freese D, Schneider BU, Hüttl RF (2009a) Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ Sci Policy 12:1112–1121. doi:10.1016/j.envsci.2009.08.008

    Article  Google Scholar 

  • Quinkenstein A, Jochheim H, Schneider BU, Hüttl RF (2009b) Modellierung des Kohlenstoffhaushalts von Pappel-Kurzumtriebsplantagen in Brandenburg. In: Reeg T, Bemmann A, Konold W, Murach D, Spiecker H (eds) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, pp 193–203. doi:10.1002/9783527627462.ch17

    Chapter  Google Scholar 

  • Quinkenstein A, Böhm C, Matos E, Freese D, Hüttl RF (2011) Assessing the carbon sequestration in short rotation coppice systems of Robinia pseudoacacia on marginal sites in NE-Germany. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems, advances in agroforestry, vol 8., pp 201–216. doi:10.1007/978–94–007–1630–8_11

    Chapter  Google Scholar 

  • Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a Review. Acta Silv Lign Hung 4:127–132. doi:10.1093/forestry/75.5.547

    Google Scholar 

  • Rodriguez JA, Burger JA (2004) Forest soil productivity of mined land in the Midwestern and Eastern Coalfield regions. Soil Sci Soc Am J 68:833–844

    Article  Google Scholar 

  • Sauter UH, Schneider I (1993) Bestimmung von Brenn- und Heizwerten an Pappel und Weide. Holz als Roh- und Werkstoff 51:378

    Google Scholar 

  • Schaaf W (2001) What can element budgets of false-time series tell us about ecosystem development on post-lignite mining sites? Ecol Eng 17:241–252. doi:10.1016/S0925-8574(00)00142-7

    Article  Google Scholar 

  • Schaaf W, Hüttl RF (2004) Monitoring des Stoff- und Wasserhaushalts von Kippenstandorten als Kenngröße der Ökosystementwicklung. In: Hüttl RF, Gerwin W (eds) Cottbuser Schriften zur Ökosystemgenese und Landschaftsentwicklung, vol 2. Forschungszentrum Landschaftsent-wicklung und Bergbaulandschaften (FZLB), Cottbus, pp 179–193

    Google Scholar 

  • Schneck V (2010) Robinie-Züchtungsansätze und Begründungsverfahren. In: Agrarholz 2010 – Symposium am 18 und 19 Mai 2010, Berlin. Agency for Renewable Resources (FNR), Gülzow-Prüzen, pp 1–8

    Google Scholar 

  • Schroth G, Lehmann J, Barrios E (2003) Soil nutrient availability and acidity. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility: concepts and research methods. CABI Publishing, Wallingford, pp 93–130

    Google Scholar 

  • Schulze ED (2000) The carbon and nitrogen cycle of forest ecosystems. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems, Ecol. Stud. 142. Springer, Berlin, pp 3–13

    Chapter  Google Scholar 

  • SdK (2007) Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2006. Statistik der Kohlenwirtschaft e.V, Essen/Cologne, 88 p

    Google Scholar 

  • SdK (2011) Braunkohle in der Übersicht – Stand 08/2011. Statistik der Kohlenwirtschaft e.V., 1 p

    Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2010) Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil Sediment Water 3(2):1–20

    Google Scholar 

  • Shrestha RK, Lal R (2006) Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environ Int 32:781–796. doi:10.1016/j.envint.2006.05.001

    Article  PubMed  CAS  Google Scholar 

  • Shrestha RK, Lal R (2008) Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant Soil 306:249–260. doi:10.1007/s11104-008-9578-4

    Article  CAS  Google Scholar 

  • Shrestha RK, Lal R (2010) Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma 157:196–205. doi:10.1016/j.geoderma.2010.04.013

    Article  CAS  Google Scholar 

  • Shrestha RK, Lal R, Jacinthe P-A (2009) Enhancing carbon and nitrogen sequestration in reclaimed soils through organic amendments and chiseling. Soil Sci Soc Am J 73:1004–1011. doi:10.2136/sssaj2008.0216

    Article  CAS  Google Scholar 

  • Shukla MK, Lal R, Underwood J, Ebinger M (2004) Physical and hydrological characteristics of reclaimed minesoils in Southeastern Ohio. Soil Sci Soc Am J 68:1352–1359. doi:10.2136/sssaj2004.1352

    Article  CAS  Google Scholar 

  • Snyder LJU, Mueller JP, Luginbuhl JM, Brownie C (2007) Growth characteristics and allometry of Robinia pseudoacacia as a silvopastoral system component. Agrofor Syst 70:41–51. doi:10.1007/s10457-007-9035-z

    Article  Google Scholar 

  • Tharakan PJ, Volk TA, Abrahamson LP, White EH (2003) Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenerg 25(6):571–580. doi:10.1016/S0961-9534(03)00054-0

    Article  CAS  Google Scholar 

  • Udawatta RP, Krstansky JJ, Henderson GS, Garrett HE (2002) Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J Environ Qual 31:1214–1225

    Article  PubMed  CAS  Google Scholar 

  • Ussiri DAN, Lal R (2008) Method for determining coal carbon in the reclaimed minesoils contaminated with coal. Soil Sci Soc Am J 72:231–237. doi:10.2136/sssaj2007.0047

    Article  CAS  Google Scholar 

  • Waitkus C, Richter HG (2001) Die Robinie und ihr Holz. Bundesforschungsanstalt für Forst- und Holzwirtschaft (BFH), Hamburg, 4 p

    Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83

    Article  Google Scholar 

  • Zeleznik JD, Skousen JG (1996) Survival of three tree species on old reclaimed surface mines in Ohio. J Environ Qual 25:1429–1435. doi:10.2134/jeq1996.00472425002500060037x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Quinkenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quinkenstein, A., Freese, D., Böhm, C., Tsonkova, P., Hüttl, R.F. (2012). Agroforestry for Mine-Land Reclamation in Germany: Capitalizing on Carbon Sequestration and Bioenergy Production. In: Nair, P., Garrity, D. (eds) Agroforestry - The Future of Global Land Use. Advances in Agroforestry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4676-3_17

Download citation

Publish with us

Policies and ethics