Skip to main content

Differential Regulation of Tyrosine Hydroxylase by Continuous and Intermittent Hypoxia

  • Conference paper
  • First Online:
Arterial Chemoreception

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 758))

Abstract

Although continuous hypoxia (CH) and intermittent hypoxia (IH) cause reduction in oxygen availability, organisms adapt to the effects of chronic CH whereas IH adversely impacts autonomic functions. Catecholamines are expressed both in the central and peripheral nervous systems and they play important roles in the regulation of cardio-respiratory functions during hypoxia. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for catecholamine synthesis. Several studies have examined the effects of hypoxia on catecholamines by focusing on the regulation of TH. In this article, we present a brief overview of the impact of chronic CH and IH on TH expression, activity and the associated cellular mechanism(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bobrovskaya L, Gilligan C, Bolster EK, Flaherty JJ, Dickson PW, Dunkley PR (2007) Sustained phosphorylation of tyrosine hydroxylase at serine 40: a novel mechanism for maintenance of catecholamine synthesis. J Neurochem 100:479–489

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Cabiale Z, Parrado C, Fuxe K, Agnati L, Narváez JA (2007) Receptor-receptor interactions in central cardiovascular regulation. Focus on neuropeptide/alpha(2)-adrenoreceptor interactions in the nucleus tractus solitarius. J Neural Transm 114:115–125

    Article  PubMed  Google Scholar 

  • Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick PF (1999) Tetrahydropterin-dependent amino acid hydroxylase. Ann Rev Biochem 68:355–381

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Methods Enzymol 349:9–23

    Article  PubMed  CAS  Google Scholar 

  • Gozal E, Shah ZA, Pequignot J-M, Pequignot J, Sachleben LR, Czyzyk-Krzeska MF, Li RC, Guo S-Z, Gozal D (2005) Tyrosine hydroxylase expression and activity in the rat brain: differential regulation after long-term intermittent or sustained hypoxia. J Appl Physiol 99:642–649

    Article  PubMed  CAS  Google Scholar 

  • Hanbauer I (1977) Regulation of tyrosine hydroxylase in carotid body. Adv Biochem Psychopharmacol 16:275–280

    PubMed  CAS  Google Scholar 

  • Hui AS, Striet JB, Gudelsky G, Soukhova GK, Gozal E, Beitner-Johnson D, Guo SZ, Sachleben LR Jr, Haycock JW, Gozal D, Czyzyk-Krzeska MF (2003) Regulation of catecholamines by sustained and intermittent hypoxia in neuroendocrine cells and sympathetic neurons. Hypertension 42:1130–1136

    Article  PubMed  CAS  Google Scholar 

  • Khan SA, Nanduri J, Yuan G, Kinsman B, Kumar GK, Joseph J, Kalyanaraman B, Prabhakar NR (2011) NADPH oxidase 2 mediates intermittent hypoxia-induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid Redox Signal 14:533–542

    Article  PubMed  CAS  Google Scholar 

  • Kumar GK, Kim DK, Lee MS, Ramachandran R, Prabhakar NR (2003) Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. J Appl Physiol 95:536–544

    PubMed  CAS  Google Scholar 

  • Kumar GK, Rai V, Sharma SD, Ramakrishnan DP, Peng YJ, Souvannakitti D, Prabhakar NR (2006) Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol 575:229–239

    Article  PubMed  CAS  Google Scholar 

  • Nyunoya T, Monick MM, Powers LS, Yarovinsky TO, Hunninghake GW (2005) Macrophages survive hyperoxia via prolonged ERK activation due to phosphatase down-regulation. J Biol Chem 280:26295–26302

    Article  PubMed  CAS  Google Scholar 

  • Paulding WR, Schnell PO, Bauer AL, Striet JB, Nash JA, Kuznetsova AV, Czyzyk-Krzeska MF (2002) Regulation of gene expression for neurotransmitters during adaptation to hypoxia in oxygen-sensitive neuroendocrine cells. Microsc Res Tech 59:178–187

    Article  PubMed  CAS  Google Scholar 

  • Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci USA 100:10073–10078

    Article  PubMed  CAS  Google Scholar 

  • Pequignot JM, Cottet-Emard JM, Dalmaz Y, Peyrin L (1987) Dopamine and norepinephrine dynamics in rat carotid body during long-term hypoxia. J Auton Nerv Syst 21:9–14

    Article  PubMed  CAS  Google Scholar 

  • Raghuraman G, Rai V, Peng YJ, Prabhakar NR, Kumar GK (2009) Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal 11:1777–1789

    Article  PubMed  CAS  Google Scholar 

  • Schnell PO, Ignacak ML, Bauer AL, Striet JB, Paulding WR, Czyzyk-Krzeska MF (2003) Regulation of tyrosine hydroxylase promoter activity by the von Hippel-Hindau tumor suppressor protein and hypoxia-inducible transcription factors. J Neurochem 85:483–491

    Article  PubMed  CAS  Google Scholar 

  • Soulier V, Gestreau C, Borghini N, Dalmaz Y, Cottet-Emard JM, Pequignot JM (1997) Peripheral chemosensitivity and central integration: neuroplasticity of catecholaminergic cells under hypoxia. Comp Biochem Physiol A Physiol 118:1–7

    Article  PubMed  CAS  Google Scholar 

  • Souvannakitti D, Kumar GK, Fox A, Prabhakar NR (2009) Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells. J Neurophysiol 101:2837–2846

    Article  PubMed  CAS  Google Scholar 

  • Souvannakitti D, Nanduri J, Yuan G, Kumar GK, Fox AP, Prabhakar NR (2010) NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci 30:10763–10772

    Article  PubMed  CAS  Google Scholar 

  • Truttmann AC, Ashraf Q, Mishra OP, Delivoria-Papadopoulos M (2004) Effect of hypoxia on protein phosphatase 2A activity, subcellular distribution and expression in cerebral cortex of newborn piglets. Neuroscience 127:355–363

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Adhikary G, McCormick AA, Holcroft JJ, Kumar GK, Prabhakar NR (2004) Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol 557:773–783

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Nanduri J, Bhasker CR, Semenza GL, Prabhakar NR (2005) Ca2+/Calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem 280:4321–4328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Heart, Lung, and Blood Institute (PO1HL-90554 to NRP and RO1HL-89616 to GKK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh K. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Raghuraman, G., Prabhakar, N.R., Kumar, G.K. (2012). Differential Regulation of Tyrosine Hydroxylase by Continuous and Intermittent Hypoxia. In: Nurse, C., Gonzalez, C., Peers, C., Prabhakar, N. (eds) Arterial Chemoreception. Advances in Experimental Medicine and Biology, vol 758. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4584-1_51

Download citation

Publish with us

Policies and ethics