Skip to main content

Induction of Apoptosis by Polyphenolic Compounds in Cancer Cells

  • Chapter
  • First Online:
Natural compounds as inducers of cell death
  • 977 Accesses

Abstract

Apoptosis, one of the main types of programmed cell death, is a kind of defense mechanism that eliminates the cells that are abnormal or not needed and plays a critical role for the development and maintenance of tissue homeostasis. Apoptosis can be triggered by various physiological and pathological stimuli. Apoptotic pathways require activation of caspases, a group destructive cystein proteases responsible for the cleavage of the key cellular proteins. Recent studies indicate that are two main apoptotic pathways, including extrinsic or death receptor pathway and intrinsic or mitochondrial pathway. Many natural compounds induce apoptosis in various cancer cells by acting through these pathways. These compounds are either antioxidants or inducers of antioxidant defense mechanism. Polyphenols (alone or in combination) are major constituents of plant-derived antioxidants that induce apoptosis by variety of mechanisms in cancer cells and reduce the risk of cancer. This chapter is focused on the effects of polyphenols such as resveratrol, quercetin and tannic acid on apoptosis in various cancers such as breast, colon and prostate cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalinkeel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD et al (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68(16):1773–1789

    PubMed  CAS  Google Scholar 

  • Adhami VM, Khan N, Mukhtar H (2009) Cancer chemoprevention by pomegranate: laboratory and clinical evidence. Nutr Cancer 61(6):811–815

    PubMed  Google Scholar 

  • Afaq F, Zaman N, Khan N, Syed DN, Sarfaraz S et al (2008) Inhibition of epidermal growth factor receptor signaling pathway by delphinidin, an anthocyanidin in pigmented fruits and vegetables. Int J Cancer 123(7):1508–1515

    PubMed  CAS  Google Scholar 

  • Agarwal C, Singh RP, Dhanalakshmi S, Tyagi AK, Tecklenburg M et al (2003) Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene 22(51):8271–8282

    PubMed  CAS  Google Scholar 

  • Agarwal C, Tyagi A, Kaur M, Agarwal R (2007) Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis 28(7):1463–1470

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 14;71(10):1397–1421

    Google Scholar 

  • Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18:75–81

    PubMed  CAS  Google Scholar 

  • Alkhalaf M (2007) Resveratrol-induced apoptosis is associated with activation of p53 and inhibition of protein translation in T47D human breast cancer cells. Pharmacology 80(2–3):134–143

    PubMed  CAS  Google Scholar 

  • Alkhalaf M, El-Mowafy A, Renno W, Rachid O, Ali A et al (2008) Resveratrol-induced apoptosis in human breast cancer cells is mediated primarily through the caspase-3-dependent pathway. Arch Med Res 39(2):162–168

    PubMed  CAS  Google Scholar 

  • Azız MH, Kumar R, Ahmad N (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms. Int J Oncol 23:17–28

    PubMed  Google Scholar 

  • Aziz MH, Nihal M, Fu VX, Jarrard DF, Ahmad N (2006) Resveratrol caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3′-kinase/Akt pathway and Bcl-2 family proteins. Mol Cancer Ther 5:1335–1341

    PubMed  CAS  Google Scholar 

  • Bawadi HA, Bansode RR, Trappey A 2nd, Truax RE, Losso JN (2005) Inhibition of Caco-2 colon, MCF-7 and Hs578T breast, and DU 145 prostatic cancer cell proliferation by water-soluble black bean condensed tannins. Cancer Lett 218(2):153–162

    PubMed  CAS  Google Scholar 

  • Benitez DA, Pozo-Guisado E, Alvarez-Barrientos A, Fernandez-Salguero PM, Castellon EA (2007a) Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer–derived cell lines. J Androl 28(2):282–293

    PubMed  CAS  Google Scholar 

  • Benitez DA, Pozo-Guisado E, Clementi M, Castello’n E, Fernandez-Salguero PM (2007b) Non-genomic action of resveratrol on androgen and oestrogen receptors in prostate cancer: modulation of the phosphoinositide 3-kinase pathway. Br J Cancer 96:1595–1604

    PubMed  CAS  Google Scholar 

  • Benitez DA, Hermoso MA, Pozo-Guisado E, Fernández-Salguero PM, Castellón EA (2009) Regulation of cell survival by resveratrol involves inhibition of NFĸB-regulated gene expression in prostate cancer cells. Prostate 69:1045–1054

    PubMed  CAS  Google Scholar 

  • Bin Hafeez B, Asim M, Siddiqui IA, Adhami VM, Murtaza I et al (2008) Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: a new weapon to blunt prostate cancer growth. Cell Cycle 7(21):3320–3326

    PubMed  CAS  Google Scholar 

  • Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740

    PubMed  CAS  Google Scholar 

  • Bradshaw R, Edward Dennis E (2003) Apoptosis signaling: a means to an End. Handb Cell Signal 3(331):431–439

    Google Scholar 

  • Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7(3):249–257

    PubMed  CAS  Google Scholar 

  • Busch C, Jacob C, Anwar A, Burkholz T, Aicha L Ba, Cerella C, Diederich M, Brandt W, Wessjohann L, Montenarh M (2010) Diallylpolysulfides induce growth arrest and apoptosis. Int J Oncol 36(3):743–749

    PubMed  CAS  Google Scholar 

  • Cardile V, Scifo C, Russo A, Falsaperla M, Morgia G et al (2003) Involvement of HSP70 in resveratrol-induced apoptosis of human prostate cancer. Anticancer Res 23(6C):4921–4926

    PubMed  CAS  Google Scholar 

  • Castillo-Pichardo L, Martínez-Montemayor MM, Martínez JE, Wall KM, Cubano LA et al (2009) Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clin Exp Metastasis 26(6):505–516

    PubMed  CAS  Google Scholar 

  • Chalabi N, Delort L, Le Corre L, Satih S, Bignon YJ et al (2006) Gene signature of breast cancer cell lines treated with lycopene. Pharmacogenomics 7(5):663–672

    PubMed  CAS  Google Scholar 

  • Chen X, Beutler JA, McCloud TG, Loehfelm A, Yang L et al (2003) Tannic acid is an inhibitor of CXCL12 (SDF-1α)/CXCR4 with antiangiogenic activity. Clin Cancer Res 9:3115–3123

    PubMed  CAS  Google Scholar 

  • Chen KS, Hsiao YC, Kuo DY, Chou MC, Chu SC et al (2009) Tannic acid-induced apoptosis and-enhanced sensitivity to arsenic trioxide in human leukemia HL-60 cells. Leuk Res 33(2):297–307

    PubMed  Google Scholar 

  • Chien SY, Wu YC, Chung JG, Yang JS, Lu HF et al (2009) Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol 28(8):493–503

    PubMed  CAS  Google Scholar 

  • Chiu FL, Lin JK (2008) Downregulation of androgen receptor expression by luteolin causes inhibition of cell proliferation and induction of apoptosis in human prostate cancer cells and xenografts. Prostate 68(1):61–71

    PubMed  CAS  Google Scholar 

  • Chiu TL, Su CC (2009) Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappaBp65 expression in breast cancer MDA-MB-231 cells. Int J Mol Med 23(4):469–475

    PubMed  CAS  Google Scholar 

  • Choi EJ, Kim GH (2008) Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine 15(9):683–690

    PubMed  CAS  Google Scholar 

  • Choi EJ, Kim GH (2009a) Apigenin Induces Apoptosis through a Mitochondria/Caspase-Pathway in Human Breast Cancer MDA-MB-453 Cells. J Clin Biochem Nutr 44(3):260–265

    PubMed  CAS  Google Scholar 

  • Choi EJ, Kim GH (2009b) Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. J Nutr Biochem 20(4):285–290

    PubMed  CAS  Google Scholar 

  • Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ et al (2001) Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 19(4):837–844

    PubMed  CAS  Google Scholar 

  • Choi EJ, Bae SM, Ahn WS (2008) Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch Pharm Res 31(10):1281–1285

    PubMed  CAS  Google Scholar 

  • Chou CC, Wu YC, Wang YF, Chou MJ, Kuo SJ et al (2009) Capsaicin-induced apoptosis in human breast cancer MCF-7 cells through caspase-independent pathway. Oncol Rep 21(3):665–671

    PubMed  CAS  Google Scholar 

  • Chou CC, Yang JS, Lu HF, Ip SW, Lo C et al (2010) Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 33(8):1181–1191

    PubMed  CAS  Google Scholar 

  • Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38(6):421–464

    PubMed  CAS  Google Scholar 

  • Chung CS, Jiang Y, Cheng D, Birt DF (2007) Impact of adenomatous polyposis coli (APC) tumor suppressor gene in human colon cancer cell lines on cell cycle arrest by apigenin. Mol Carcinog 46(9):773–782

    PubMed  CAS  Google Scholar 

  • Clement MV, Hirpara JL, Chawdhury SH, Pervaiz S (1998) Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92:996–1002

    PubMed  CAS  Google Scholar 

  • Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65–70

    PubMed  CAS  Google Scholar 

  • Corre LL, Chalabi N, Delort L, Bingon YJ, Bernard-Gallon DJ (2005) Resveratrol and breast cancer chemoprevention: molecular mechanisms. Mol Nutr Food Res 49:462–471

    PubMed  Google Scholar 

  • Cosan D, Soyocak A, Basaran A, Degirmenci I, Gunes HV (2009) The effects of resveratrol and tannic acid on apoptosis in colon adenocarcinoma cell line. Saudi Med J 30(2):191–195

    PubMed  Google Scholar 

  • Cosan DT, Bayram B, Soyocak A, Basaran A, Gunes HV et al (2010) Role of phenolic compounds in nitric oxide synthase activity in colon and breast adenocarcinoma. Cancer Biother Radiopharm 25(5):577–580

    PubMed  CAS  Google Scholar 

  • D’Archivio M, Santangelo C, Scazzocchio B, Varì R, Filesi C, Masella R, Giovannini C (2008) Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int J Mol Sci 2(9):213–228

    Google Scholar 

  • Dai Z, Nair V, Khan M, Ciolino HP (2010) Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro. Oncol Rep 24(4):1087–1091

    PubMed  CAS  Google Scholar 

  • Debatin K-M (2004) Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53:153–159

    PubMed  Google Scholar 

  • Delmas D, Rébé C, Lacour S, Filomenko R, Athias A et al (2003) Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 278(42):41482–41490

    PubMed  CAS  Google Scholar 

  • Devi MA, Das NP (1993) In vitro effects of natural plant polyphenols on the proliferation of normal and abnormal human lymphocytes and their secretions of interleukin-2. Cancer Lett 69:191–196

    PubMed  CAS  Google Scholar 

  • do Lim Y, Jeong Y, Tyner AL, Park JH (2007) Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol 292(1):G66–G75

    CAS  Google Scholar 

  • Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F et al (2005) Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223(2):181–190

    PubMed  CAS  Google Scholar 

  • Fan G, Steer CJ (1999) The role of retinoblastoma protein in apoptosis. Apoptosis 4:21–29

    PubMed  CAS  Google Scholar 

  • Fan YZ, Li GH, Wang YH, Ren QY, Shi HJ (2010) Effects of genistein on colon cancer cells in vitro and in vivo and its mechanism of action. Zhonghua Zhong Liu Za Zhi 32(1):4–9

    PubMed  Google Scholar 

  • Ferenc P, Solár P, Kleban J, Mikes J, Fedorocko P (2010) Down-regulation of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in human breast cancer cells. J Photochem Photobiol B 98(1):25–34

    PubMed  CAS  Google Scholar 

  • Filomeni G, Graziani I, Rotilio G, Ciriolo MR (2007) Trans-resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways. Genes Nutr 2:295–305

    PubMed  CAS  Google Scholar 

  • Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1:639–649

    PubMed  CAS  Google Scholar 

  • Guo JM, Xiao BX, Liu DH, Grant M, Zhang S et al (2004) Biphasic effect of daidzein on cell growth of human colon cancer cells. Food Chem Toxicol 42(10):1641–1646

    PubMed  CAS  Google Scholar 

  • Gusman J, Malonne H, Atassi G (2001) A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 22(8):1111–1117

    PubMed  CAS  Google Scholar 

  • Hafeez BB, Siddiqui IA, Asim M, Malik A, Afaq F et al (2008) A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-kappaB signaling. Cancer Res 68(20):8564–8572

    PubMed  Google Scholar 

  • Hakimuddin F, Paliyath G, Meckling K (2004) Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res Treat 85(1):65–79

    PubMed  CAS  Google Scholar 

  • Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8(9):950–988

    CAS  Google Scholar 

  • Hastak K, Agarwal MK, Mukhtar H, Agarwal ML (2005) Ablation of either p21 or Bax prevents p53-dependent apoptosis induced by green tea polyphenol epigallocatechin-3-gallate. FASEB J 19(7):789–791

    PubMed  CAS  Google Scholar 

  • Hatipoglu A, Basaran A, Dikmen M, Turgut Cosan D, Degirmenci I et al (2010) Evaluation of effects of quercetin (3,3′,4′,5,7-pentohidroxyflavon) on apoptosis and telomerase enzyme activity in MCF-7 and NIH-3 T3 cell lines to compared with tamoxifen. Balkan Med J. doi:10.5174/tutfd.2010.03372.3

  • Hilchie AL, Furlong SJ, Sutton K, Richardson A, Robichaud MR et al (2010) Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria. Nutr Cancer 62(3):379–389

    PubMed  CAS  Google Scholar 

  • Holdenrieder S, Stieber P (2004) Apoptotic markers in cancer. Clin Biochem 37(7):605–617

    PubMed  CAS  Google Scholar 

  • Hope C, Planutis K, Planutiene M, Moyer MP, Johal KS et al (2008) Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res 52(1):S52–S61

    PubMed  Google Scholar 

  • Hsieh TC (2009) Antiproliferative effects of resveratrol and the mediating role of resveratrol targeting protein NQO2 in androgen receptor-positive, hormone-non-responsive CWR22Rv1 cells. Anticancer Res 29(8):3011–3017

    PubMed  CAS  Google Scholar 

  • Hsieh TC, Wu JM (1999) Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Exp Cell Res 249:109–115

    PubMed  CAS  Google Scholar 

  • Hsu A, Bray TM, Helferich WG, Doerge DR, Ho E (2010) Differential effects of whole soy extract and soy isoflavones on apoptosis in prostate cancer cells. Exp Biol Med (Maywood) 235(1):90–97

    CAS  Google Scholar 

  • Huang WU, Cai ZY, Zhang J (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62(1):1–20

    PubMed  Google Scholar 

  • Hwang JT, Ha J, Park IJ, Lee SK, Baik HW et al (2007) Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett 247(1):115–121

    PubMed  CAS  Google Scholar 

  • Ignatowicz E, Baer-Dubowska W (2001) Resveratrol, a natural chemopreventive agent against degenerative diseases. Pol J Pharmacol 53:557–569

    PubMed  CAS  Google Scholar 

  • Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ (2009) Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem 106(1):73–82

    PubMed  CAS  Google Scholar 

  • Jin S, Zhang QY, Kang XM, Wang JX, Zhao WH (2010) Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann Oncol 21(2):263–268

    PubMed  CAS  Google Scholar 

  • Joe AK, Liu H, Suzui M, Vural ME, Xiao D et al (2002) Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res 8(3):893–903

    PubMed  CAS  Google Scholar 

  • Juan ME, Wenzel U, Daniel H, Planas JM (2008) Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells J. Agric Food Chem 56:4813–4818

    CAS  Google Scholar 

  • Jung YH, Heo J, Lee YJ, Kwon TK, Kim YH (2010) Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Sci 86(9–10):351–357

    PubMed  CAS  Google Scholar 

  • Kaur P, Shukla S, Gupta S (2008) Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis 29(11):2210–2217

    PubMed  CAS  Google Scholar 

  • Khan NS, Hadi SM (1998) Structural features of tannic acid important for DNA degradation in the presence of Cu(II). Mutagenesis 13(3):271–274

    PubMed  CAS  Google Scholar 

  • Khan NS, Ahmad A, Hadi SM (2000) Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem Biol Interact 125(3):177–189

    PubMed  CAS  Google Scholar 

  • Kim YH, Lee YJ (2007) TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. J Cell Biochem 100(4):998–1009

    PubMed  CAS  Google Scholar 

  • Kim YA, Choi BT, Lee YT, Park DI et al (2004) Resveratrol inhibits cell proliferation and induces apoptosis of human breast carcinoma MCF-7 cells. Oncol Rep 11:441–446

    PubMed  Google Scholar 

  • Kim WK, Bang MH, Kim ES, Kang NE, Jung KC et al (2005) Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J Nutr Biochem 16(3):155–162

    PubMed  CAS  Google Scholar 

  • Kim YM, Hwang JT, Kwak DW, Lee YK, Park OJ (2007) Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells. Ann N Y Acad Sci 1095:496–503

    PubMed  CAS  Google Scholar 

  • Kim YH, Lee DH, Jeong JH, Guo ZS, Lee YJ (2008) Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem Pharmacol 75(10):1946–1958

    PubMed  CAS  Google Scholar 

  • Kim MY, Trudel LJ, Wogan GN (2009) Apoptosis induced by capsaicin and resveratrol in colon carcinoma cells requires nitric oxide production and caspase activation. Anticancer Res 29:3733–3740

    PubMed  CAS  Google Scholar 

  • Kim HJ, Kim SK, Kim BS, Lee SH, Park YS et al (2010) Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J Agric Food Chem 58(15):8643–8650

    PubMed  CAS  Google Scholar 

  • Kotha A, Sekharam M, Cilenti L, Siddiquee K, Khaled A et al (2006) Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Mol Cancer Ther 5(3):621–629

    PubMed  CAS  Google Scholar 

  • Kralova J, Dvorak M, Koc M, Kral V (2008) p38 MAPK plays an essential role in apoptosis induced by photoactivation of a novel ethylene glycol porphyrin derivative. Oncogene 27:3010–3050

    PubMed  CAS  Google Scholar 

  • Lee SC, Chan J, Clement MV, Pervaiz S (2006) Functional proteomics of resveratrol-induced colon cancer cell apoptosis: caspase-6-mediated cleavage of lamin A is a major signaling loop. Proteomics 6:2386–2394

    PubMed  CAS  Google Scholar 

  • Lee DH, Szczepanski M, Lee YJ (2008) Role of Bax in quercetin-induced apoptosis in human prostate cancer cells. Biochem Pharmacol 75(12):2345–2355

    PubMed  CAS  Google Scholar 

  • Lee SC, Chan JY, Pervaiz S (2009a) Spontaneous and 5-fluorouracil-induced centrosome amplification lowers the threshold to resveratrol-evoked apoptosis in colon cancer cells. Cancer Lett 288(1):36–41

    PubMed  Google Scholar 

  • Lee YK, Park SY, Kim YM, Lee WS, Park OJ (2009b) AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp Mol Med 41(3):201–207

    PubMed  CAS  Google Scholar 

  • Lee YK, Park SY, Kim YM, Park OJ (2009c) Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells. Ann N Y Acad Sci 1171:489–494

    PubMed  CAS  Google Scholar 

  • Li Y, Liu J, Liu X, Xing K, Wang Y et al (2006) Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9. Appl Biochem Biotechnol 135:181–192

    PubMed  CAS  Google Scholar 

  • Li Z, Li J, Mo B, Hu C, Liu H et al (2008) Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol In Vitro 22(7):1749–1753

    PubMed  CAS  Google Scholar 

  • Liu Q, Loo WT, Sze SC, Tong Y (2009) Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1 transcription. Phytomedicine 16(10):916–922

    PubMed  CAS  Google Scholar 

  • Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20

    PubMed  CAS  Google Scholar 

  • Los M, Walczak H (2002) Caspases-their role in cell death and cell survival, Molecular biology intelligence, Unit 24. Kluwer Academic Press, Georgetown, pp 155–174, 221–235

    Google Scholar 

  • Losso JN, Bansode RR, Trappey A 2nd, Bawadi HA, Truax R (2004) In vitro anti-proliferative activities of ellagic acid. J Nutr Biochem 15(11):672–678

    PubMed  CAS  Google Scholar 

  • Lu QJ, Yu ZL (2005) Effects of genistein on proliferation and apoptosis in HT-29 cells. Wei Sheng Yan Jiu 34(5):571–573

    PubMed  Google Scholar 

  • Mahyar-Roemer M, Katsen A, Mestres P, Roemer K (2001) Resveratrol induces colon tumor cell apoptosis independently of p53 and precede by epithelial differentiation, mitochondrial proliferation and membrane potential collapse. Int J Cancer 94:615–622

    PubMed  CAS  Google Scholar 

  • Mahyar-Roemer M, Kohler H, Roemer K (2002) Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells. BMC Cancer 17:2–27

    Google Scholar 

  • Marienfeld C, Tadlock L, Yamagiwa Y, Patel T (2003) Inhibition of cholangiocarcinoma growth by tannic acid. Hepatology 37:1097–1104

    PubMed  CAS  Google Scholar 

  • Mgbonyebi OP, Russo J, Russo IH (1998) Antiproliferative effect of synthetic resveratrol on human breast epithelial cells. Int J Oncol 12:865–869

    PubMed  CAS  Google Scholar 

  • Middleton E, Kandaswamı C, Theoharıdes TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  • Mohan J, Gandhi AA, Bhavya BC, Rashmi R, Karunagaran D et al (2006) Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 281(26):17599–17611

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Kiyozuka Y, Uemura Y, Senzaki H, Shikata N et al (2001) Resveratrol inhibits human breast cancer cell growth and may mitigate the effect of linoleic acid, a potent breast cancer cell stimulator. J Cancer Res Clin Oncol 127:258–264

    PubMed  CAS  Google Scholar 

  • Nam S, Smith DM, Dou QP (2001) Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis. Cancer Epidemiol Biomarkers Prev 10:1083–1088

    PubMed  CAS  Google Scholar 

  • Narayanan BA, Narayanan NK, Re GG, Nixon DW (2003) Differential expression of genes induced by resveratrol in LNCaP cells: p53-mediated molecular targets. Int J Cancer 104:204–212

    PubMed  CAS  Google Scholar 

  • Naus PJ, Henson R, Bleeker G, Wehbe H, Meng F, Patel T (2007) Tannic acid synergizes the cytotoxicity of chemotherapeutic drugs in human cholangiocarcinoma by modulating drug efflux pathways. J Hepatol 46:222–229

    PubMed  CAS  Google Scholar 

  • Palozza P, Colangelo M, Simone R, Catalano A, Boninsegna A (2010) Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis 31(10):1813–1821

    PubMed  CAS  Google Scholar 

  • Pan MH, Lin JH, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by penta-O-galloyl–D-glucose through activation of caspase-3 in human leukemia HL-60 cells. Eur J Pharmacol 381:171–183

    PubMed  CAS  Google Scholar 

  • Perez-Vizcaino F, Duarte J, Jimenez R, Santos-Buelga C, Osuna A (2009) Antihypertensive effects of the flavonoid quercetin. Pharmacol Rep 61:67–75

    PubMed  CAS  Google Scholar 

  • Pervaız S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985

    PubMed  Google Scholar 

  • Pohland T, Wagner S, Mahyar-Roemer M, Roemer K (2006) Bax and Bak are the critical complementary effectors of colorectal cancer cell apoptosis by chemopreventive resveratrol. Anticancer Drugs 17:471–478

    PubMed  Google Scholar 

  • Pozo-Guisado E, Alvarez-Barrientos A, Mulero-Navarro S, Santiago-Josefat B, Fernandez-Salguero PM (2002) The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem Pharmacol 64:1375–1386

    PubMed  CAS  Google Scholar 

  • Pozo-Guisado E, Merino JM, Mulero-Navarro S, Lorenzo-Benayas MJ, Centeno F et al (2005) Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with down-regulation of Bcl-2 and NF-ĸB. Int J Cancer 115:74–84

    PubMed  CAS  Google Scholar 

  • Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A (2007) Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther 6(9):2591–2599

    PubMed  CAS  Google Scholar 

  • Ramanathan R, Tan CH, Das NP (1992) Cytotoxic effect of plant polyphenols and fat-soluble vitamins on malignant human cultured cells. Cancer Lett 62:217–224

    PubMed  CAS  Google Scholar 

  • Ramos S (2007) Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18(7):427–442

    PubMed  CAS  Google Scholar 

  • Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52:507–526

    PubMed  CAS  Google Scholar 

  • Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76(11):1340–1351

    PubMed  CAS  Google Scholar 

  • Rodgers EH, Grant MH (1998) The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells. Chem Biol Interact 116(3):213–228

    PubMed  CAS  Google Scholar 

  • Romero I, Paez A, Ferruelo A, Lujan M, Berenguer A (2002) Polyphenols in red wine inhibit the proliferation and induce apoptosis of LNCaP cells. BJU Int 89:950–954

    PubMed  CAS  Google Scholar 

  • Sakagami H, Jiang Y, Kusama K, Atsumi T, Ueha T et al (2000) Cytotoxic activity of hydrolyzable tannins against human oral tumor cell lines - a possible mechanism. Phytomedicine 7:39–47

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Horiguchi H, Oguma E, Kayama F (2010) Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J Nutr Biochem 21(9):856–864

    PubMed  CAS  Google Scholar 

  • Sala G, Minutolo F, Macchia M, Sacchi N, Ghidoni R (2003) Resveratrol structure and ceramide-associated growth inhibition in prostate cancer cells. Drugs Exp Clin Res 29(5–6):263–269

    PubMed  CAS  Google Scholar 

  • Salman H, Bergman M, Djaldetti M, Bessler H (2007) Lycopene affects proliferation and apoptosis of four malignant cell lines. Biomed Pharmacother 61(6):366–369

    PubMed  CAS  Google Scholar 

  • Sánchez AM, Malagarie-Cazenave S, Olea N, Vara D, Chiloeches A et al (2007) Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis 12(11):2013–2024

    PubMed  Google Scholar 

  • Sareen D, Darjatmoko SR, Albert DM, Polans AS (2007) Mitochondria, calcium, and calpain are key mediators of resveratrol-induced apoptosis in breast cancer. Mol Pharmacol 72(6):1466–1475

    PubMed  CAS  Google Scholar 

  • Saunders FR, Wallace HM (2010) On the natural chemoprevention of cancer. Plant Physiol Biochem 48(7):621–626

    PubMed  CAS  Google Scholar 

  • Scarlatti F, Sala G, Somenzi G, Signorelli P, Sacchi N et al (2003) Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J 17(15):2339–2341

    PubMed  CAS  Google Scholar 

  • Scarlatti F, Sala G, Ricci C, Maioli C, Milani F, et al. (2007) Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett 253(1): 124–130.

    PubMed  CAS  Google Scholar 

  • Schmitt E, Lehmann L, Metzler M, Stopper H (2002) Hormonal and genotoxic activity of resveratrol. Toxicol Lett 136(2):133–142

    PubMed  CAS  Google Scholar 

  • Schneider Y, Vincent F, Benoit D, Badolo L, Gosse F et al (2000) Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett 158:85–91

    PubMed  CAS  Google Scholar 

  • Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y et al (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem 16(6):360–367

    PubMed  CAS  Google Scholar 

  • Senthilkumar K, Elumalai P, Arunkumar R, Banudevi S, Gunadharini ND (2010) Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Mol Cell Biochem 344(1-2):173–184

    PubMed  CAS  Google Scholar 

  • Shan BE, Wang MX, Li RQ (2009) Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer Invest 27(6):604–612

    PubMed  CAS  Google Scholar 

  • Shankar S, Siddiqui I, Srivastava RK (2007a) Molecular mechanisms of resveratrol (3,4,5-trihydroxy-transstilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem 304:273–285

    PubMed  CAS  Google Scholar 

  • Shankar S, Chen Q, Siddiqui I, Sarva K, Srivastava RK (2007b) Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 4′, 5 tri-hydroxystilbene): molecular mechanisms and therapeutic potential. J Mol Signal 2:7

    PubMed  Google Scholar 

  • Shankar S, Chen Q, Sarva K, Siddiqui I, Srivastava RK (2007c) Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J Mol Signal 2:10

    PubMed  Google Scholar 

  • Shi RX, Ong CN, Shen HM (2004) Luteolin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells. Oncogene 23(46):7712–7721

    PubMed  CAS  Google Scholar 

  • Shukla S, Gupta S (2008) Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic Biol Med 44(10):1833–1845

    PubMed  CAS  Google Scholar 

  • Sprick MR, Walczak H (2004) The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta 1644:125–132

    PubMed  CAS  Google Scholar 

  • Srivastava RC, Husain MM, Hasan SK, Athar M (2000) Green tea polyphenols and tannic acid act as potent inhibitors of phorbol ester-induced nitric oxide generation in rat hepatocytes independent of their antioxidant properties. Cancer Lett 153(1–2):1–5

    PubMed  CAS  Google Scholar 

  • Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S (2007) Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle 6(23):2953–2961

    PubMed  CAS  Google Scholar 

  • Szendel B, Tyihák E, Király-Véghely Z (2000) Dose-dependent effect of resveratrol on proliferation and apoptosis in endothelial and tumor cell cultures. Exp Mol Med 32(2):88–92

    Google Scholar 

  • Taffetani S, Ueno Y, Meng F, Venter J, Francis H et al (2005) Tannic acid inhibits cholangiocyte proliferation after bile duct ligation via a cyclic adenosine 5′,3′- monophosphate-dependent pathway. Am J Pathol 166(6):1671–1679

    PubMed  CAS  Google Scholar 

  • Tang Y, Zhao DY, Elliott S, Zhao W, Curiel TJ et al (2007) Epigallocatechin-3 gallate induces growth inhibition and apoptosis in human breast cancer cells through survivin suppression. Int J Oncol 31(4):705–711

    PubMed  CAS  Google Scholar 

  • Tang SN, Singh C, Nall D, Meeker D, Shankar S et al (2010) The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteri-stics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 18(5):14

    Google Scholar 

  • Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M (2010) Chemopreventive potential of curcumin in prostate cancer. Genes Nutr 5(1):61–74

    PubMed  CAS  Google Scholar 

  • Thakur VS, Ruhul Amin AR, Paul RK, Gupta K, Hastak K et al (2010) p53-Dependent p21-mediated growth arrest pre-empts and protects HCT116 cells from PUMA-mediated apoptosis induced by EGCG. Cancer Lett 296(2):225–232

    PubMed  CAS  Google Scholar 

  • Thangapazham RL, Passi N, Maheshwari RK (2007) Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biol Ther 6(12):1938–1943

    PubMed  CAS  Google Scholar 

  • Thoennissen NH, O’Kelly J, Lu D, Iwanski GB, La DT et al (2010) Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene 29(2):285–296

    PubMed  CAS  Google Scholar 

  • Tophkhane C, Yang S, Bales W, Archer L, Osunkoya A et al (2007) Bcl-2 overexpression sensitizes MCF-7 cells to genistein by multiple mechanisms. Int J Oncol 31(4):867–874

    PubMed  CAS  Google Scholar 

  • Trincheri NF, Nicotra G, Follo C, Castino R, Isidoro C (2007) Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis 28(5):922–931

    PubMed  CAS  Google Scholar 

  • Twomey C, McCarthy JV (2005) Pathways of apoptosis and importance in development. J Cell Mol Med 9(2):345–359

    PubMed  CAS  Google Scholar 

  • Uchiumi F, Sato T, Tanuma S (1998) Identification and characterization of a tannic acid-responsive negative regulatory element in the mouse mammary tumor virus promoter. J Biol Chem 273:12499–12508

    PubMed  CAS  Google Scholar 

  • Van Erk MJ, Roepman P, van der Lende TR, Stierum RH, Aarts JM et al (2004) Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer-related mechanisms in colon cancer cells in vitro. Eur J Nutr 44(3):143–156

    PubMed  Google Scholar 

  • Van Erk MJ, Roepman P, van der Lende TR, Stierum RH, Aarts JM, et al (2005) Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer-related mechanisms in colon cancer in vitro. Eur J Nutr 44(3):143–156.

    PubMed  Google Scholar 

  • Vijayababu MR, Kanagaraj P, Arunkumar A, Ilangovan R, Aruldhas MM, Arunakaran J (2005) Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. J Cancer Res Clin Oncol 131(11):765–771

    PubMed  CAS  Google Scholar 

  • Vijayababu MR, Arunkumar A, Kanagaraj P, Arunakaran J (2006a) Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells. J Carcinog 6:5–10

    Google Scholar 

  • Vijayababu MR, Kanagaraj P, Arunkumar A, Ilangovan R, Dharmarajan et al (2006b) Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3. Oncol Res 16(2):67–74

    PubMed  CAS  Google Scholar 

  • Wang AH, Zhang LS (2007a) Effect of lycopene on the proliferation of MCF-7 and MDA-MB-231 cells. Sichuan Da Xue Xue Bao Yi Xue Ban 38(6):958–960, 976

    PubMed  CAS  Google Scholar 

  • Wang A, Zhang L (2007b) Effect of lycopene on proliferation and cell cycle of hormone refractory prostate cancer PC-3 cell line. Wei Sheng Yan Jiu 36(5):575–578

    PubMed  Google Scholar 

  • Wang CC, Chen LG, Yang LL (2000) Cuphiin D1, the macrocyclic hydrolyzable tannin induced apoptosis in HL- 60 cell line. Cancer Lett 149:77–83

    PubMed  CAS  Google Scholar 

  • Wang HJ, Tashiro S, Onodera S, Ikejima T (2008) Inhibition of insulin-like growth factor 1 receptor signaling enhanced silibinin-induced activation of death receptor and mitochondrial apoptotic pathways in human breast cancer MCF-7 cells. J Pharmacol Sci 107(3):260–269

    PubMed  CAS  Google Scholar 

  • Wang Y-Z, Cao B, Li S-X, Zang Z-H, Zhang J-Z et al (2009a) Effect of proliferation, cell cycle, and Bcl-2s of MCF-7 cells by resveratrol. J Asian Nat Prod Res 11(4):380–390

    PubMed  CAS  Google Scholar 

  • Wang BF, Wang JS, Lu JF, Kao TH, Chen BH (2009b) Antiproliferation effect and mechanism of prostate cancer cell lines as affected by isoflavones from soybean cake. J Agric Food Chem 57(6):2221–2232

    PubMed  CAS  Google Scholar 

  • Watson JL, Hill R, Lee PW, Giacomantonio CA, Hoskin DW (2008) Curcumin induces apoptosis in HCT-116 human colon cancer cells in a p21-independent manner. Exp Mol Pathol 84(3):230–233

    PubMed  CAS  Google Scholar 

  • Wenzel U, Herzog A, Kuntz S, Daniel H (2004) Protein expression profiling identifies molecular targets of quercetin as a major dietary flavonoid in human colon cancer cells. Proteomics 4(7):2160–2174

    PubMed  CAS  Google Scholar 

  • Wolter F, Akoglu B, Clausnitzer A, Stein J (2001) Down-regulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J Nutr 131(8):2197–2203

    PubMed  CAS  Google Scholar 

  • Xavier CP, Lima CF, Preto A, Seruca R, Fernandes-Ferreira M et al (2009) Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett 281(2):162–170

    PubMed  CAS  Google Scholar 

  • Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C (2003) Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17(12):1487–1496

    PubMed  CAS  Google Scholar 

  • Yang KM, Pyo JO, Kim GY, Yu R, Han IS et al (2009) Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cell Mol Biol Lett 14(3):497–510

    PubMed  CAS  Google Scholar 

  • Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94(6):739–750

    PubMed  CAS  Google Scholar 

  • Yun JM, Afaq F, Khan N, Mukhtar H (2009) Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol Carcinog 48(3):260–270

    PubMed  CAS  Google Scholar 

  • Zhang X, Anderson J, Kaushik RS, Dwivedi C (2009) Effects of resveratrol, an important component of red wine, on intestinal cancer development. Int J Wine Res 1:147–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Turgut Cosan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cosan, D.T., Soyocak, A. (2012). Induction of Apoptosis by Polyphenolic Compounds in Cancer Cells. In: Diederich, M., Noworyta, K. (eds) Natural compounds as inducers of cell death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4575-9_8

Download citation

Publish with us

Policies and ethics