Skip to main content

The Wonders of Flap Endonucleases: Structure, Function, Mechanism and Regulation

  • Chapter
  • First Online:
The Eukaryotic Replisome: a Guide to Protein Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5′-flaps. These 5′-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5′-flaps with exquisite specificity. FENs are paradigms for the 5′ nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5′ nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balakrishnan L, Stewart J, Polaczek P, Campbell JL, Bambara RA (2009) Acetylation of Dna2 endonuclease/helicase and flap endonuclease 1 by p300 promotes DNA stability by creating long flap intermediates. J Biol Chem 285:4398–4404

    Article  PubMed  Google Scholar 

  • Beattie TR, Bell SD (2011) The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes. Biochem Soc Trans 39:70–76

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14:131–160

    Article  PubMed  CAS  Google Scholar 

  • Bochman ML, Sabouri N, Zakian VA (2010) Unwinding the functions of the Pif1 family helicases. DNA Repair 9:237–249

    Article  PubMed  CAS  Google Scholar 

  • Bornarth CJ, Ranalli TA, Henricksen LA, Wahl AF, Bambara RA (1999) Effect of flap modifications on human FEN1 cleavage. Biochemistry 38:13347–13354

    Article  PubMed  CAS  Google Scholar 

  • Bouvier B, Grubmuller H (2007) A molecular dynamics study of slow base flipping in DNA using conformational flooding. Biophys J 93:770–786

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw RA, Brickey WW, Walker KW (1998) N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem Sci 23:263–267

    Article  PubMed  CAS  Google Scholar 

  • Brosh RM Jr, von Kobbe C, Sommers JA, Karmakar P, Opresko PL, Piotrowski J, Dianova I, Dianov GL, Bohr VA (2001) Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. EMBO J 20:5791–5801

    Article  PubMed  CAS  Google Scholar 

  • Brosh RM Jr, Driscoll HC, Dianov GL, Sommers JA (2002) Biochemical characterization of the WRN-FEN-1 functional interaction. Biochemistry 41:12204–12216

    Article  PubMed  CAS  Google Scholar 

  • Budd ME, Campbell JL (1997) A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol 17:2136–2142

    PubMed  CAS  Google Scholar 

  • Budd ME, Reis CC, Smith S, Myung K, Campbell JL (2006) Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 26:2490–2500

    Article  PubMed  CAS  Google Scholar 

  • Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284:4041–4045

    Article  PubMed  CAS  Google Scholar 

  • Ceska TA, Sayers JR, Stier G, Suck D (1996) A helical arch allowing single-stranded DNA to thread through T5 5′-exonuclease. Nature 382:90–93

    Article  PubMed  CAS  Google Scholar 

  • Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA (2004) Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116:39–50

    Article  PubMed  CAS  Google Scholar 

  • Chon HG, Vassilev A, DePamphilis ML, Zhao YM, Zhang JM, Burgers PM, Crouch RJ, Cerritelli SM (2009) Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex. Nucleic Acids Res 37:96–110

    Article  PubMed  CAS  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  PubMed  CAS  Google Scholar 

  • Devos JM, Tomanicek SJ, Jones CE, Nossal NG, Mueser TC (2007) Crystal structure of bacteriophage T4 5′ nuclease in complex with a branched DNA reveals how flap endonuclease-1 family nucleases bind their substrates. J Biol Chem 282:31713–31724

    Article  PubMed  CAS  Google Scholar 

  • Dionne I, Robinson NP, McGeoch AT, Marsh VL, Reddish A, Bell SD (2003) DNA replication in the hyperthermophilic archaeon Sulfolobus solfataricus. Biochem Soc Trans 31:674–676

    Article  PubMed  CAS  Google Scholar 

  • Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman and Company, New York

    Google Scholar 

  • Finger LD, Shen B (2010) FEN1 (flap endonuclease 1). In Atlas Genet Cytogenet Oncol Haematol (URL:http://www.atlasgeneticsoncology.org/Genes/FEN1ID40543ch11q12.html)

  • Finger L, Blanchard M, Theimer C, Sengerova B, Singh P, Chavez V, Liu F, Grasby J, Shen B (2009) The 3′-flap pocket of human flap endonuclease 1 is critical for substrate binding and catalysis. J Biol Chem 284:22184–22194

    Article  PubMed  CAS  Google Scholar 

  • Frank G, Qiu J, Zheng L, Shen B (2001) Stimulation of eukaryotic flap endonuclease-1 activities by proliferating cell nuclear antigen (PCNA) is independent of its in vitro interaction via a consensus PCNA binding region. J Biol Chem 276:36295–36302

    Article  PubMed  CAS  Google Scholar 

  • Friedrich-Heineken E, Henneke G, Ferrari E, Hubscher U (2003) The acetylatable lysines of human Fen1 are important for endo- and exonuclease activities. J Mol Biol 328:73–84

    Article  PubMed  CAS  Google Scholar 

  • Friedrich-Heineken E, Hubscher U (2004) The Fen1 extrahelical 3′-flap pocket is conserved from archaea to human and regulates DNA substrate specificity. Nucleic Acids Res 32:2520–2528

    Article  PubMed  CAS  Google Scholar 

  • Garcin ED, Hosfield DJ, Desai SA, Haas BJ, Bjoras M, Cunningham RP, Tainer JA (2008) DNA apurinic-apyrimidinic site binding and excision by endonuclease IV. Nat Struct Mol Biol 15:515–522

    Article  PubMed  CAS  Google Scholar 

  • Gloor JW, Balakrishnan L, Bambara RA (2010) Flap endonuclease 1 mechanism analysis indicates flap base binding prior to threading. J Biol Chem 285:34922–34931

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Chavez V, Singh P, Finger LD, Hang H, Hegde ML, Shen B (2008a) Comprehensive mapping of the C-terminus of flap endonuclease-1 reveals distinct interaction sites for five proteins that represent different DNA replication and repair pathways. J Mol Biol 377:679–690

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Qian L, Liu R, Dai H, Zhou M, Zheng L, Shen B (2008b) Nucleolar localization and dynamic roles of flap endonuclease 1 in ribosomal DNA replication and damage repair. Mol Cell Biol 28:4310–4319

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Zheng L, Xu H, Dai H, Zhou M, Pascua MR, Chen QM, Shen B (2010) Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat Chem Biol 6:766–773

    Article  PubMed  CAS  Google Scholar 

  • Harrington JJ, Lieber MR (1994) Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev 8:1344–1355

    Article  PubMed  CAS  Google Scholar 

  • Harrington JJ, Lieber MR (1995) DNA structural elements required for FEN-1 binding. J Biol Chem 270:4503–4508

    Article  PubMed  CAS  Google Scholar 

  • Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hubscher U, Hottiger MO (2001) Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell 7:1221–1231

    Article  PubMed  CAS  Google Scholar 

  • Hohl M, Dunand-Sauthier I, Staresincic L, Jaquier-Gubler P, Thorel F, Modesti M, Clarkson SG, Scharer OD (2007) Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity. Nucleic Acids Res 35:3053–3063

    Article  PubMed  CAS  Google Scholar 

  • Hosfield DJ, Frank G, Weng Y, Tainer JA, Shen B (1998a) Newly discovered archaebacterial flap endonucleases show a structure-specific mechanism for DNA substrate binding and catalysis resembling human flap endonuclease-1. J Biol Chem 273:27154–27161

    Article  PubMed  CAS  Google Scholar 

  • Hosfield DJ, Mol CD, Shen B, Tainer JA (1998b) Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell 95:135–146

    Article  PubMed  CAS  Google Scholar 

  • Hutton RD, Craggs TD, White MF, Penedo JC (2009) PCNA and XPF cooperate to distort DNA substrates. Nucleic Acids Res 38:1664–1675

    Article  PubMed  Google Scholar 

  • Hwang KY, Baek K, Kim HY, Cho Y (1998) The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nat Struct Biol 5:707–713

    Article  PubMed  CAS  Google Scholar 

  • Imamura O, Campbell JL (2003) The human Bloom syndrome gene suppresses the DNA replication and repair defects of yeast dna2 mutants. Proc Natl Acad Sci USA 100:8193–8198

    Article  PubMed  CAS  Google Scholar 

  • Ivanov I, Tainer JA, McCammon JA (2007) Unraveling the three-metal-ion catalytic mechanism of the DNA repair enzyme endonuclease IV. Proc Natl Acad Sci USA 104:1465–1470

    Article  PubMed  CAS  Google Scholar 

  • Johnson RE, Kovvali GK, Prakash L, Prakash S (1995) Requirement of the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science 269:238–240

    Article  PubMed  CAS  Google Scholar 

  • Jose D, Datta K, Johnson NP, von Hippel PH (2009) Spectroscopic studies of position-specific DNA “breathing” fluctuations at replication forks and primer-template junctions. Proc Natl Acad Sci USA 106:4231–4236

    Article  PubMed  CAS  Google Scholar 

  • Kang YH, Lee CH, Seo YS (2010) Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 45:71–96

    Article  PubMed  CAS  Google Scholar 

  • Kao HI, Henricksen LA, Liu Y, Bambara RA (2002) Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double flap structure as the cellular substrate. J Biol Chem 277:14379–14389

    Article  PubMed  CAS  Google Scholar 

  • Kim IS, Lee MY, Lee IH, Shin SL, Lee SY (2000) Gene expression of flap endonuclease-1 during cell proliferation and differentiation. Biochim Biophys Acta 1496:333–340

    Article  PubMed  CAS  Google Scholar 

  • Krahn JM, Beard WA, Wilson SH (2004) Structural insights into DNA polymerase beta deterrents for misincorporation support an induced-fit mechanism for fidelity. Structure 12:1823–1832

    Article  PubMed  CAS  Google Scholar 

  • Kucherlapati M, Yang K, Kuraguchi M, Zhao J, Lia M, Heyer J, Kane MF, Fan K, Russell R, Brown AM et al (2002) Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc Natl Acad Sci USA 99:9924–9929

    Article  PubMed  CAS  Google Scholar 

  • Larsen E, Gran C, Saether BE, Seeberg E, Klungland A (2003) Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol Cell Biol 23:5346–5353

    Article  PubMed  CAS  Google Scholar 

  • Larsen E, Kleppa L, Meza TJ, Meza-Zepeda LA, Rada C, Castellanos CG, Lien GF, Nesse GJ, Neuberger MS, Laerdahl JK et al (2008) Early-onset lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice mutants. Cancer Res 68:4571–4579

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li J, Harrington J, Lieber MR, Burgers PM (1995) Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem 270:22109–22112

    Article  PubMed  CAS  Google Scholar 

  • Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19:233–240

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Kao HI, Bambara RA (2004) Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73:589–615

    Article  PubMed  CAS  Google Scholar 

  • Lyamichev V, Brow MA, Dahlberg JE (1993) Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260:778–783

    Article  PubMed  CAS  Google Scholar 

  • Lyamichev V, Brow MA, Varvel VE, Dahlberg JE (1999) Comparison of the 5′ nuclease activities of taq DNA polymerase and its isolated nuclease domain. Proc Natl Acad Sci USA 96:6143–6148

    Article  PubMed  CAS  Google Scholar 

  • Mase T, Kubota K, Miyazono K, Kawarabayasi Y, Tanokura M (2009) Crystallization and preliminary X-ray analysis of flap endonuclease 1 (FEN1) from Desulfurococcus amylolyticus. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:923–925

    Article  PubMed  Google Scholar 

  • Mesiet-Cladiere L, Norais C, Kuhn J, Briffotaux J, Sloostra JW, Ferrari E, Hubscher U, Flament D, Myllykallio H (2007) A novel proteomic approach identifies new interaction partners for proliferating cell nuclear antigen. J Mol Biol 372:1137–1148

    Article  Google Scholar 

  • Murante RS, Rust L, Bambara RA (1995) Calf 5′ to 3′ exo/endonuclease must slide from a 5′ end of the substrate to perform structure-specific cleavage. J Biol Chem 270:30377–30383

    Article  PubMed  CAS  Google Scholar 

  • Navarro MS, Bi L, Bailis AM (2007) A mutant allele of the transcription factor IIH helicase gene, RAD3, promotes loss of heterozygosity in response to a DNA replication defect in Saccharomyces cerevisiae. Genetics 176:1391–1402

    Article  PubMed  CAS  Google Scholar 

  • Nazarkina JK, Lavrik OI, Khodyreva SN (2008) Flap endonuclease-1 and its role in the processes of DNA metabolism in eucaryotic cells. Mol Biol (Mosk) 42:405–421

    Article  Google Scholar 

  • Orans J, McSweeney EA, Iyer RR, Hast MA, Hellinga HW, Modrich P, Beese LS (2011) Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family. Cell 145:212–223

    Article  PubMed  CAS  Google Scholar 

  • Ovádi J (1991) Physiological significance of metabolic channelling. J Theor Biol 152:1–22

    Article  PubMed  Google Scholar 

  • Parikh SS, Mol CD, Hosfield DJ, Tainer JA (1999) Envisioning the molecular choreography of DNA base excision repair. Curr Opin Struct Biol 9:37–47

    Article  PubMed  CAS  Google Scholar 

  • Pascal JM, O’Brien PJ, Tomkinson AE, Ellenberger T (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432:473–478

    Article  PubMed  CAS  Google Scholar 

  • Pickering TJ, Garforth SJ, Thorpe SJ, Sayers JR, Grasby JA (1999) A single cleavage assay for T5 5′–> 3′ exonuclease: determination of the catalytic parameters for wild-type and mutant proteins. Nucleic Acids Res 27:730–735

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Qian Y, Frank P, Wintersberger U, Shen B (1999) Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol Cell Biol 19:8361–8371

    PubMed  CAS  Google Scholar 

  • Reagan MS, Pittenger C, Siede W, Friedberg EC (1995) Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol 177:364–371

    PubMed  CAS  Google Scholar 

  • Robertson AB, Klungland A, Rognes T, Leiros I (2009) DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci 66:981–993

    Article  PubMed  CAS  Google Scholar 

  • Sakurai S, Kitano K, Yamaguchi H, Hamada K, Okada K, Fukuda K, Uchida M, Ohtsuka E, Morioka H, Hakoshima T (2005) Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J 24:683–693

    Article  PubMed  CAS  Google Scholar 

  • Sakurai S, Kitano K, Morioka H, Hakoshima T (2008) Crystallization and preliminary crystallographic analysis of the catalytic domain of human flap endonuclease 1 in complex with a nicked DNA product: use of a DPCS kit for efficient protein-DNA complex crystallization. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:39–43

    Article  PubMed  Google Scholar 

  • Sengerova B, Tomlinson C, Atack JM, Williams R, Sayers JR, Williams NH, Grasby JA (2010) Bronsted analysis and rate-limiting steps for the T5 flap endonuclease catalyzed hydrolysis of exonucleolytic substrates. Biochemistry 49:8085–8093

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Otterlei M, Sommers JA, Driscoll HC, Dianov GL, Kao HI, Bambara RA, Brosh RM Jr (2004) WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork. Mol Biol Cell 15:734–750

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Sommers JA, Gary RK, Friedrich-Heineken E, Hubscher U, Brosh RM Jr (2005) The interaction site of Flap Endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res 33:6769–6781

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Qiu J, Hosfield D, Tainer JA (1998) Flap endonuclease homologs in archaebacteria exist as independent proteins. Trends Biochem Sci 23:171–173

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Singh P, Liu R, Qiu J, Zheng L, Finger LD, Alas S (2005) Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays 27:717–729

    Article  PubMed  CAS  Google Scholar 

  • Solinger JA, Pascolini D, Heyer WD (1999) Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol Cell Biol 19:5930–5942

    PubMed  CAS  Google Scholar 

  • Stewart JA, Campbell JL, Bambara RA (2009) Significance of the dissociation of Dna2 by flap endonuclease 1 to Okazaki fragment processing in Saccharomyces cerevisiae. J Biol Chem 284:8283–8291

    Article  PubMed  CAS  Google Scholar 

  • Storici F, Henneke G, Ferrari E, Gordenin DA, Hubscher U, Resnick MA (2002) The flexible loop of human FEN1 endonuclease is required for flap cleavage during DNA replication and repair. EMBO J 21:5930–5942

    Article  PubMed  CAS  Google Scholar 

  • Stucki M, Jonsson ZO, Hubscher U (2001) In eukaryotic flap endonuclease 1, the C terminus is essential for substrate binding. J Biol Chem 276:7843–7849

    Article  PubMed  CAS  Google Scholar 

  • Syson K, Tomlinson C, Chapados BR, Sayers JR, Tainer JA, Williams NH, Grasby JA (2008) Three metal ions participate in the reaction catalyzed by T5 flap endonuclease. J Biol Chem 283:28741–28746

    Article  PubMed  CAS  Google Scholar 

  • Tom S, Henricksen LA, Bambara RA (2000) Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem 275:10498–10505

    Article  PubMed  CAS  Google Scholar 

  • Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T (2006) DNA ligases: structure, reaction mechanism, and function. Chem Rev 106:687–699

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson CG, Atack JM, Chapados B, Tainer JA, Grasby JA (2010) Substrate recognition and catalysis by flap endonucleases and related enzymes. Biochem Soc Trans 38:433–437

    Article  PubMed  CAS  Google Scholar 

  • Tsutakawa SE, Classen S, Chapados BR, Arvai AS, Finger LD, Guenther G, Tomlinson CG, Thompson P, Sarker AH, Shen B et al (2011) Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell 145:198–211

    Article  PubMed  CAS  Google Scholar 

  • Tumey LN, Huck B, Gleason E, Wang J, Silver D, Brunden K, Boozer S, Rundlett S, Sherf B, Murphy S et al (2004) The identification and optimization of 2,4-diketobutyric acids as flap endonuclease 1 inhibitors. Bioorg Med Chem Lett 14:4915–4918

    Article  PubMed  CAS  Google Scholar 

  • Tumey LN, Bom D, Huck B, Gleason E, Wang J, Silver D, Brunden K, Boozer S, Rundlett S, Sherf B et al (2005) The identification and optimization of a N-hydroxy urea series of flap endonuclease 1 inhibitors. Bioorg Med Chem Lett 15:277–281

    Article  PubMed  CAS  Google Scholar 

  • Waga S, Bauer G, Stillman B (1994) Reconstitution of complete SV40 DNA replication with purified replication factors. J Biol Chem 269:10923–10934

    PubMed  CAS  Google Scholar 

  • Warbrick E, Coates PJ, Hall PA (1998) Fen1 expression: a novel marker for cell proliferation. J Pathol 186:319–324

    Article  PubMed  CAS  Google Scholar 

  • Williams R, Sengerova B, Osborne S, Syson K, Ault S, Kilgour A, Chapados BR, Tainer JA, Sayers JR, Grasby JA (2007) Comparison of the catalytic parameters and reaction specificities of a phage and an archaeal flap endonuclease. J Mol Biol 371:34–48

    Article  PubMed  CAS  Google Scholar 

  • Wilson SH, Kunkel TA (2000) Passing the baton in base excision repair. Nat Struct Biol 7:176–178

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Li J, Li X, Hsieh CL, Burgers PM, Lieber MR (1996) Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res 24:2036–2043

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Potapova O, Leschziner AE, Grindley ND, Joyce CM (2001) Contacts between the 5′ nuclease of DNA polymerase I and its DNA substrate. J Biol Chem 276:30167–30177

    Article  PubMed  CAS  Google Scholar 

  • Yang W (2010) Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44:1–93

    Article  PubMed  Google Scholar 

  • Yang W, Lee JY, Nowotny M (2006) Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol Cell 22:5–13

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky C (1989) A second reaction catalyzed by the tryptophan synthetase of Escherichia coli. 1959. Biochim Biophys Acta 1000:137–145

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Zhou M, Chai Q, Parrish J, Xue D, Patrick SM, Turchi JJ, Yannone SM, Chen D, Shen B (2005) Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Dai H, Qiu J, Huang Q, Shen B (2007a) Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia, and newborn lethality in mice. Mol Cell Biol 27:3176–3186

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Dai H, Zhou M, Li M, Singh P, Qiu J, Tsark W, Huang Q, Kernstine K, Zhang X et al (2007b) Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med 13:812–819

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Dai H, Hegde ML, Zhou M, Guo Z, Wu X, Wu J, Su L, Zhong X, Mitra S et al (2011a) Fen1 mutations that specifically disrupt its interaction with PCNA cause aneuploidy-associated cancer. Cell Res 21:1052–1067

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Jia J, Finger LD, Guo Z, Zer C, Shen B (2011b) Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res 39:781–794

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This article was supported by the European Union 7th Research Framework Programme (FP7)-Marie Curie International Incoming Fellowship Project No. 254386 (LDF), National Cancer Institute grants RO1CA081967, P01 CA092584 (JAT), BBSRC grant BBF0147321 (JAG), and RO1CA073764 (BS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. David Finger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Finger, L.D. et al. (2012). The Wonders of Flap Endonucleases: Structure, Function, Mechanism and Regulation. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_16

Download citation

Publish with us

Policies and ethics