Skip to main content

Abstract

This chapter provides observational evidence of climatic variations in Siberia for three time scales: during the past 10,000 years, during the past millennium prior to instrumental observations, and for the past 130 years during the period of large-scale meteorological observations. The observational evidence is appended with the global climate model projections for the twenty-first century based on the most probable scenarios of the future dynamics of the major anthropogenic and natural factors responsible for contemporary climatic changes. Historically, climate of Siberia varied broadly. It was both warmer and colder than the present. However, during the past century, it became much warmer; the cold season precipitation north of 55°N increased, but no rainfall increase over most of Siberia has occurred. This led to drier summer conditions and to increased possibility of droughts and fire weather. Projections of the future climate indicate the further temperature increases, more in the cold season and less in the warm season, significant changes in the hydrological cycle in Central and southern Siberia (summer dryness), ecosystems’ shifts, and changes in the permafrost distribution and stability. Observed and projected frequencies of various extreme events have increased recently and are projected to further increase. While in the north of Siberia, contemporary models predict warmer winters at the end of the twenty-first century and paleoreconstructions hint to warmer summers compared to the present warming observed during the period of instrumental observations. These three groups of estimates are broadly consistent with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACIA (Arctic Climate Impact Assessment) (2005) Chapter 2 “Arctic climate system and its global role”. In: Arctic climate impact assessment, “impact of a warming arctic”. Cambridge University Press, Cambridge, 144 pp

    Google Scholar 

  • Allen M, Ingram W (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232

    CAS  Google Scholar 

  • Amiro BD, Orchansky AL, Barr AG, Black TA, Chambers FS, Chapin FS, Goulden ML, Litvak M, Liu HP, McCaughey JH, McMillan A, Randerson JT (2006) The effect of post-fire stand age on the boreal forest energy balance. Agr Forest Meteorol 140:41–50

    Google Scholar 

  • Andreev AA, Klimanov VA (1991) Vegetation history and climate changes in the interfluve of the rivers Ugra and Yakonit (the Southern Yakutia) in Holocene. J Bot 76(3):334–351 (in Russian)

    Google Scholar 

  • Andreev AA, Klimanov VA, Sulerzhitsky LD (1997) Younger Dryas pollen records from central and southern Yakutia. Quat Int 41/42:111–117

    Google Scholar 

  • Andreev AA, Klimanov VA, Sulerzhitsky LD, Khotinsky NA (1989) Chronology landscape-climatic changes in Central Yakutia during the Holocene. In: Khotinsky NA (ed) Paleoclimate of the late glacial – Holocene time. Nauka, Moscow, pp 116–121

    Google Scholar 

  • Andreev AA, Klimanov VA, Sulerzhitsky LD (2001) Vegetation and climate history of the Yana River lowland, Russia, during the last 6400 yr. Quat Sci Rev 20:259–266

    Google Scholar 

  • Andreev AA, Siegert C (2002) Late pleisticene and holocene vegetation and climate on the Taymyr lowland, Northern Siberia. Quat Res 57:138–150

    Google Scholar 

  • Andreev AA, Siegert C, Klimanov VA, Derevyagin AY, Shilova G, Melles M (2002) Late Pleistocene and Holocene vegetation and climate on the Taymyr Lowland, Northern Siberia. Quat Res 57:138–150

    Google Scholar 

  • Anisimov OA (2009) Stochastic modelling of the active layer thickness under conditions of the current and future climate. Kriosfera Zemli 13(3):36–44

    Google Scholar 

  • Arndt DS, Baringer MO, Johnson MR (eds) (2010) State of the climate in 2009. Bull Am Meteor Soc 91(6):S1–S224

    Google Scholar 

  • Arzhanov MM, Eliseev AV, Demchenko PF, Mokhov II, Khon VCh (2008) Simulation of thermal and hydrological regimes of Siberian river watersheds under permafrost conditions from reanalysis data. Izvestiya Atmos Ocean Phys 44(1):83–89

    Google Scholar 

  • Belelli Marchesini L (2007) Analysis of the carbon cycle of steppe and old field ecosystems of Central Asia. PhD thesis, University of Tuscia, Viterbo Italy, 227 pp. http://dspace.unitus.it/handle/2067/540

  • Belorusova ZhM, Lovelius NV, Ukraintseva VV (1987) Regional features of nature variations on Taimyr in the Holocene. Bot J 72:610–618 (in Russian)

    Google Scholar 

  • Belov AV, Bezrukova EV, Sokolova LP, Abzaeva AA, Letunova PP, Fisher EE, Orlova LA (2006) Vegetation of Pribaykal’ye as indicator of global and regional changes of environmental conditions of Northern Asia in Late Cenozoic. Geogr Nat Resour 27(3):5–18 (in Russian)

    Google Scholar 

  • Belova VA, Barysheva YeM, Kol’tsova VG, Kutaph’eva TK, Nikol’skaya MV, Savina LN (1982) Vegetation cover of Eastern Siberia in Holocene. In: Logachev NA (ed) Late Quaternary and Holocene of the southern past of East Siberia. Academy of Sciences of the USSR, Siberian branch, Institute of the Earth’s crust, Novosibirsk, pp 64–70 (in Russian)

    Google Scholar 

  • Bezrukova EV, Abzaeva AA, Letunova PP, Kulagina NV, Veershinin KE, Belov AV, Orlova LA, Danko LV, Krapivina SV (2005) Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as a paleoenvironmental indicator. Quat Int 136:47–57

    Google Scholar 

  • Blyakharchuk TA (1989) History of vegetation and climate of south-east of West Siberia in the Holocene (according to macrofossil and spore-pollen analyses of peat deposits). PhD thesis, Tomsk, 226 pp (in Russian)

    Google Scholar 

  • Blyakharchuk TA (2003) Four new pollen sections tracing the Holocene vegetational development of the southern part of the West Siberian Lowland. The Holocene 13(5):715–731

    Google Scholar 

  • Blyakharchuk TA, Sulerzhitsky LD (1999) Holocene vegetation and climatic Change in the forest zone of West Siberia according to pollen records from the extrazonal palsa bog Bugristoe. The Holocene 9(5):621–628

    Google Scholar 

  • Blyakharchuk TA, Wright HE, Borodavko PS, van der Knaap WO, Ammann B (2004) Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Paleogeogr Paleoclimatol Paleoecol 209:259–279

    Google Scholar 

  • Blyakharchuk TA, Wright HE, Borodavko PS, van der Knaap WO, Ammann B (2007) Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia). Paleogeogr Paleoclimatol Palynol 245:518–534

    Google Scholar 

  • Blyakharchuk TA, Wright HE, Borodavko PS, van der Knaap WO, Ammann B (2008) The role of pingos in the development of the Dzhangyskol lake-pingo complex, central Altai Mountains, southern Siberia. Paleogeogr Paleoclimatol Palynol 257:404–420

    Google Scholar 

  • Borisova OK, Zelikson EM, Kremenetski KV, Novenko EYu (2005) Landscape and climatic changes in West Siberia in Late glacial and Holocene based upon a new palynological data. Trans Russ Acad Sci Ser Geogr 6:38–49 (in Russian)

    Google Scholar 

  • Borisova OK, Novenko EYu, Zelikson EM, Kremenetski KV (2011) Lateglacial and Holocene vegetational and climatic changes in the southern taiga zone of West Siberia according to pollen records from Zhukovskoye peat mire. Quat Int 237:65–73. doi:10.1016/j.quaint.2011.01.015

    Google Scholar 

  • Borzenkova II (1992) Climatic changes during the Cenozoic era. Gidrometeoizdat, Sankt-Petersburg, 247 pp (in Russian)

    Google Scholar 

  • Borzenkova II, Brook SA (1989) On impact of volcanic eruptions on the climate changes in the late-glaciate period through Holocene. Trans State Hydrol Inst 347:40–56 (in Russian)

    Google Scholar 

  • Borzenkova II, Zubakov VA (1984) The climate optimum of the Holocene as a model of the beginning of the 21st century. Meteorol Hydrol 8:69–77 (in Russian) (Eng. trans. Russ Meteorol Hydrol, 1984, No. 8)

    Google Scholar 

  • Borzenkova II, Zhiltsova HL, Lobanov VA (2011) Ice cores data and tree-ring temperature reconstructions as sources of climate variations over the historical time. Ice and snow 2. “Nauka”, M (in Russian)

    Google Scholar 

  • Brown J, Ferrians OJ Jr, Heginbottom JA, Melnikov ES (eds) (1998) Circum-Arctic map of permafrost and ground-ice conditions. U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources, Washington, DC. Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet. Available at: http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.html

    Google Scholar 

  • Brown RD (2000) Northern hemisphere snow cover variability and change, 1915–1997. J Climate 13:2339–2355

    Google Scholar 

  • Brown RD, Mote PhW (2009) The response of northern hemisphere snow cover to a changing climate. J Climate 22:2124–2145. doi:10.1175/2008JCLI2665.1

    Google Scholar 

  • Budyko MI, Vinnikov KYa (1976) Global warming. Soviet Meteorol Hydrol 7:16–26

    Google Scholar 

  • Bulygina ON, Razuvaev VN, Korshunova NN, Groisman PYa (2007) Climate variations and changes in the climate extreme events in Russia. Environ Res Lett 2, 045020:7. doi:10.1088/1748-9326/2/4/045020

  • Bulygina ON, Razuvaev VN, Korshunova NN (2009) Changes in snow cover over Northern Eurasia in the last few decades. Environ Res Lett 4. doi:10.1088/1748-9326/4/4/045026

  • Bulygina ON, Ya P, Groisman VNRazuvaev, Radionov VF (2010) Snow cover basal ice layer changes over Northern Eurasia since 1966. Environ Res Lett 5:10. doi:10.1088/1748-9326/5/1/015004

    Google Scholar 

  • Bulygina ON, Groisman YaP, Razuvaev VN, Korshunova NN (2011) Changes in snow cover characteristics over Northern Eurasia since 1966. Environ Res Lett 6, 045204: 10. doi:10.1088/1748-9326/6/4/045204

  • Burashnikova TA, Muratova MV, Suetova IA (1982) Climatic model of territory of Soviet Union during the Holocene optimum. In: Velichko AA (ed) Development of nature of USSR in the late Pleistocene and the Holocene. Nauka, Moscow, pp 245–251 (in Russian)

    Google Scholar 

  • Callaghan TV, Johansson M, Brown RD, Groisman PYa, Labba N, Radionov V, Contributors (2011) Changing snow cover and its impacts. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA), 59 pp. AMAP Report to the Arctic Council [Available at http://amap.no/swipa/]

  • Carroll SC, Carroll TR (1989) Effect of uneven snow cover on airborne snow water equivalent estimates obtained by measuring terrestrial gamma radiation. Water Resour Res 25(7):1505–1510

    Google Scholar 

  • Chapin FS III, Sturm M, Serreze MC, McFadden GP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP et al (2005) Role of land-surface changes in arctic summer warming. Science 310:657–660

    CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    CAS  Google Scholar 

  • Conard SG, Sukhinin AI, Stocks BJ, Cahoon DR, Davidenko EP, Ivanova GA (2002) Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim Change 55:197–211

    CAS  Google Scholar 

  • Corradi C, Kolle O, Walter K, Zimov SA, Schulze E-D (2005) Carbon dioxide and methane exchange of a north-east Siberian tussock tundra. Glob Chang Biol 11:1910–1925

    Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    CAS  Google Scholar 

  • Crowley TJ, Berner RA (2001) CO2 and climate change. Science 392:870–872

    Google Scholar 

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111:D03103. doi:10.1029/2005JD006352

    Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Google Scholar 

  • Demske D, Heumann G, Granoszewski W, Nita M, Mamakowa K, Tarasov PE, Oberhansli H (2005) Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Glob Planet Change 46:255–279

    Google Scholar 

  • Easterling DR, Evans JL, Groisman PYa, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteor Soc 81:417–425

    Google Scholar 

  • Eliseev A, Mokhov I, Karpenko A (2007) Influence of direct sulfate-aerosol radiative forcing on the results of numerical experiments with a climate model of intermediate complexity. Izvestiya Atmos Ocean Phys 42(5):544–554

    Google Scholar 

  • Firsov LV, Troitski SL, Levina TP, Nikitin VP, Panychev VP (1974) Absolute age and first standard pollen diagram of Holocene peat section in northern Siberia. Bull Comm Investig Quat Period 41:121–127 (in Russian)

    Google Scholar 

  • Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Clim Chang 72:1–16

    CAS  Google Scholar 

  • Gandin LS, Celnai R, Zakhariev VE (eds) (1976) Statistical structure of meteorological fields. Az Orszagos Meteorologiai Szolgalat, Budapest, 364 pp [In Russian and Hungarian, resumes in German]

    Google Scholar 

  • Gao C, Robock A, Self S, Witter JB, Steffenson JP, Clausen HB, Siggaard-Andersen M, Johnsen S, Mayewski PA, Ammann C (2006) The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: greatest volcanic sulfate event of the past 700 years. J Geophys Res 111:D12107. doi:10.29/2005JD006710

    Google Scholar 

  • Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophys Res Lett 31:L18211. doi:10.1029/2004GL020876

    Google Scholar 

  • Glebov FZ, Karpenko LV, Klimanov VA, Mindeeva TN (1996) Paleoecological analysis of peat section in Ob’-Vasyugan inter fluver area. Sib Ecol J 6:497–504 (in Russian)

    Google Scholar 

  • Govorkova VA, Kattsov VM, Meleshko VP, Pavlova TV, Shkol’nik IM (2008) Climate of Russia in the 21st century. Part 2. Verification of atmosphere – ocean general circulation models CMIP3 for projections of future climate changes. Russ Meteorol Hydrol 33(8):467–477

    Google Scholar 

  • Groisman PYa, Bartalev SA (2007) Northern Eurasia earth science partnership initiative (NEESPI): science plan overview. Glob Planet Change 56(3–4):215–234

    Google Scholar 

  • Groisman PYa, Knight RW (2007) Prolonged dry episodes over North America: new tendencies emerging during the last 40 years. Adv Earth Sci 22(11):1191–1207

    Google Scholar 

  • Groisman PYa, Knight RW (2008) Prolonged dry episodes over the conterminous United States: new tendencies emerging during the last 40 years. J Climate 21:1850–1862

    Google Scholar 

  • Groisman PYa (1981) Empirical estimates of relationship between processes of global warming (cooling) and precipitation on USSR territory. Izw Acad Sci USSR Ser Geogr 1981(5):86–95 (in Russian, in English in Soviet Geography)

    Google Scholar 

  • Groisman PYa, Soja AJ (2009) Ongoing climatic change in Northern Eurasia: justification for expedient research. Environ Res Lett 4:7. doi:10.1088/1748-9326/4/4/045002

    Google Scholar 

  • Groisman PYa, Karl TR, Knight RW, Stenchikov GL (1994) Changes of snow cover, temperature, and radiative heat balance over the northern hemisphere. J Climate 7:1633–1656

    Google Scholar 

  • Groisman PYa et al (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Chang 42(1):243–283

    Google Scholar 

  • Groisman PYa, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Climate 18:1343–1367

    Google Scholar 

  • Groisman PYa, Knight RW, Razuvaev VN, Bulygina ON, Karl TR (2006) “State of the ground” rarely used characteristic of snow cover and frozen land: climatology and changes during the past 69 years over Northern Eurasia. J Climate 19:4933–4955

    Google Scholar 

  • Groisman PYa et al (2007) Potential forest fire danger over Northern Eurasia: changes during the 20th century. Glob Planet Change 56(3–4):371–386

    Google Scholar 

  • Groisman PYa et al (2009) The Northern Eurasia earth science partnership: an example of science applied to societal needs. Bull Am Meteorol Soc 90:671–688

    Google Scholar 

  • Groisman PYa, Gutman G, Reissell A (2011) Chapter 1. Introduction: climate and land-cover changes in the arctic. In: Gutman G, Reissell A (eds) Arctic land cover and land use in a changing climate: focus on Eurasia, vol VI. Springer, Amsterdam, 306 pp

    Google Scholar 

  • Guttman NB, Lehman RL (1992) Estimation of daily degree-days. J Appl Meteorol 31:797–810

    Google Scholar 

  • Herzschuh U, Tarasov P, Wunnemann B, Hartmann K (2004) Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Paleogeogr Paleoclimatol Paleoecol 211:1–17

    Google Scholar 

  • Houghton J (2009) Global warming. The complete briefing. Cambridge University Press, Cambridge, 438 pp

    Google Scholar 

  • Hutchinson MF, de Hoog FR (1985) Smoothing noisy data with spline functions. Numerische Mathematik 47:99–106

    Google Scholar 

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Tignor KBM, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 996 pp

    Google Scholar 

  • Isachenko AG, Shlyapnikov AA, Robozertseva OD, Filipetskaya AZ (1988) The landscape map of the USSR. General Ministry of Geodesy and Cartography of the USSR, Moscow (4 plates)

    Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42(2):RG2002. doi:10.1029/2003RG000143

    Google Scholar 

  • Jun M, Knutti R, Nychka D (2008) Spatial analysis to quantify numerical model bias and dependence: how many climate models are there? J Am Stat Soc 103(483):934–947

    CAS  Google Scholar 

  • Kaplina TN, Chekhovski (1987) Reconstruction paleogeographical situation in the maritime lowland of Yakutia during the Holocene climatic optimum. In: Pokhilainen VP (ed) Quaternary period of the North-Eastern Asia. SVKNII DVO AN SSSR, Magadan, pp 145–151 (in Russian)

    Google Scholar 

  • Kaplina TN, Lozhkin AV (1982) The history of Holocene vegetation development on coastal low-lands of Jakutia. In: The development of nature in the USSR territory in the Late Pleistocene-Holocene. Nauka, Moscow, pp 207–220

    Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Am Meteorol Soc 79:231–241

    Google Scholar 

  • Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723. doi:10.1126/science.1090228

    CAS  Google Scholar 

  • Karpenko LV (2006) Reconstructing quantitative indices of climate and vegetation successions of the Sym-Dubches interfluve for the Holocene. Geogr Nat Resour 2006(2):77–82

    Google Scholar 

  • Kattsov VM, Walsh JE, Chapman WL, Govorkova VA, Pavlova T, Zhang X (2007) Simulation and projection of arctic freshwater budget components by the IPCC AR4 global climate models. J Hydrometeorol 8:571–589

    Google Scholar 

  • Keetch JJ, Byram GM (1968) A drought index for forest fire control. U.S.D.A. Forest Service Research Paper SE-38, 35 pp. Available from: http://www.srs.fs.fed.us/pubs/

  • Khantemirov RM (1999) Tree-ring reconstruction of summer temperatures in the North of Western Siberia over the past 3248 years. Sib Ekolog J 6(2):185–191 (in Russian)

    Google Scholar 

  • Khmelevtsov SS (ed) (1986) Volcanoes, stratospheric aerosol, and the Earth climate. Gidrometeoizdat, Leningrad, 256 pp (in Russian)

    Google Scholar 

  • Khon VCh, Mokhov II (2012) The hydrological regime of large river basins in Northern Eurasia in the XX-XXI centuries. Water Resour 39(1):1–10

    CAS  Google Scholar 

  • Khon VCh, Mokhov II, Roeckner E, Semenov VA (2007) Regional changes of precipitation characteristics in Northern Eurasia from simulations with global climate model. Glob Planet Change 57:118–123

    Google Scholar 

  • Khotinsky NA (1977) The Holocene of northern Eurasia. Nauka, Moscow, 200 p (in Russian)

    Google Scholar 

  • Khotinsky NA (1984) Holocene vegetation history. In: Velichko AA, Wright HE Jr, Barnosky CW (eds) Late Quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 179–200

    Google Scholar 

  • Khotinsky NA (1989) Disputable questions of reconstruction and correlation of paleoclimates of the Holocene. In: Khotinsky NA (ed) Paleoclimates of the late Glacial and the Holocene. Nauka, Moscow, pp 12–17 (in Russian)

    Google Scholar 

  • Khotinsky NA, Klimanov VA (1985) Radiocarbon age and climatic conditions of development of palsa mires in Nadym-Kasym intefluve area in Holocene. In: Voprosy ekologii rastenii bolot, bolotnukh mestoobitanii I torfyanykh zalezhei. Karelian Branch of RAS, Petrozavodsk, pp 132–140

    Google Scholar 

  • Kind NV, Leonov BN (eds) (1982) The anthropogen of Taimyr. Paleobotanical and paleoclimatical reconstructions. Nauka, Moscow, 183 p (in Russian)

    Google Scholar 

  • Kirpotin SN, Blyakharchuk TA, Vorob’ev SN (2003) Dynamics of subarctic tussock mires in West Siberian Lowlands as an indicator of the global climatic changes. News of the Tomsk State University, Series in Biological Sciences, pp 122–134 (in Russian)

    Google Scholar 

  • Klimanov VA (1976) To the method of reconstruction of quantitative parameters of past climate. Vestnik MGU Ser Geogr 2:92–98

    Google Scholar 

  • Klimanov VA (1984) Paleoclimatic reconstructions based on the information statistical method. In: Velichko AA, Wright HE Jr, Barnosky CW (eds) Late Quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 297–303

    Google Scholar 

  • Klimanov VA (1994) The climate of the Northern Eurasia in the Alleröd time interval. Rep Acad Nauk Russ 339:533–537 (in Russian)

    CAS  Google Scholar 

  • Klimanov VA, Novenko EYu (2010) Climatic conditions in Northern Eurasia during the Holocene optimum. In: Velichko AA (ed) Atlas-monograph “evolution of landscapes and climates of Northern Eurasia”. Late Pleistocene – Holocene – elements of prognosis. Issue 3. GEOS, Moscow, 220 pp

    Google Scholar 

  • Klimanov VA, Sirin AA (1997) Dynamics of peat accumulation in northern Asia during last 3000 years. Dokl Akad Nauk 354:683–686 (in Russian)

    CAS  Google Scholar 

  • Korovin GN, Zukkert NV (2003) Climatic change impact of forest fires in Russia. In: Danilov-Danilyan VI (ed) Climatic change: view from Russia. TEIS Publishers, Moscow, pp 69–98, 416

    Google Scholar 

  • Korzun VI, Sokolov AA, Budyko MI, Voskresensky KP, Kalinin GP, Konoplyantsev AA, Korotkevich ES, L’vovitch MI (eds) (1974) Atlas of world water balance. USSR National Committee for the International Hydrological Decade. English translation. UNESCO, Paris, 35 pp + 65 maps

    Google Scholar 

  • Koshkarova BL (1989) Holocene climatic changes in the area of Yenisei River (according to paleoecological data). In: Khotinsky NA (ed) Paleoclimates of the late Glacial and the Holocene. Nauka, Moscow, pp 96–98 (in Russian)

    Google Scholar 

  • Koshkarova VL (2004) Evolution of vegetation and climate changes in the Minusa basin throughout the Holocene (according to paleocarpology data). Geogr Nat Resour 2:84–89

    Google Scholar 

  • Koshkarova VL, Koshkarov AD (2004) Regional signatures of changing landscape and climate of northern central Siberia in the Holocene. Russ Geol Geophys 45(6):672–685

    Google Scholar 

  • Kurbatova J, Arneth A, Vygodskaya NN, Kolle O, Varlagin AB, Milyukova IM, Tchebakova NM, Schulze E-D, Lloyd J (2002) Comparative ecosystem–atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snow free period. Tellus 54B:497–513

    Google Scholar 

  • Kutafiyeva TK (1975) Vegetation history in the interstream between the rivers Low and Podkamennaya Tunguska in the Holocene. In: Savina LN (ed) History of the Siberian forests in the Holocene. Forest Institute USSR Academy of Sciences Publishers, Krasnoyarsk, pp 72–95 (in Russian)

    Google Scholar 

  • Kwok R, Untersteiner N (2011) The thinning of Arctic sea ice. Phys Today 41(4):36–41

    Google Scholar 

  • Laukhin SA (1994) Evolution landscape-vegetation zonality of the north-eastern part of Asia over the Pleistocene. Rept Acad Nauk Russia 338:683–686 (In Russian)

    Google Scholar 

  • L’vov YuA, Blyakharchuk TA (1982) Paleobotanical studies of turf in the center of Tunguska meteorite fallout. In: Meteorite and meteor studies. Nauka Publishing House, Novosibirsk, pp 89–99

    Google Scholar 

  • Levina TP, Orlova LA (1993) The Holocene climatic cycles in the south of West Siberia. Geol Geophys 3:38–55 (in Russian)

    Google Scholar 

  • Levkovskaya GM, Kind NV, Zavelski FS, Firsov VS (1970) Absolute chronology of peat deposits in the area of Igarka and partition of the Holocene in West Siberia. Bull Comm Investig Quat period 39:94–101

    Google Scholar 

  • Lister AM, Sher AV (1995) Ice cores and mammoth extinction. Nature 378:23–24

    CAS  Google Scholar 

  • Lozhkin AV, Vazhenin LN (1987) Vegetation evolution of the maritime Lowland of Kolyman in the early Holocene. In: Pokhilainen VP (ed) Quaternary period of the North-Eastern Asia. SVKNII DVO AN SSSR, Magadan, pp 135–144 (in Russian)

    Google Scholar 

  • Lozhkin AV, Anderson PM et al (1995) New palynological and radiocarbon data about evolution the vegetation of West Beringia during the Late Pleistocene and Holocene. In: YuM Bychkov, Lozhkin AV (eds) History of climate and vegetation in Beringia during the Late Cenozoic. North East Interdisciplinary Research Institute, Far East branch, Russian Academy of Sciences, Magadan, pp 5–24 (in Russian)

    Google Scholar 

  • Lugina KM, Groisman PYa, Vinnikov KYa, Koknaeva VV, Speranskaya NA (2006) Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe. In: Trends online: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, pp 1881–2005. doi: 10.3334/CDIAC/cli.003

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1503

    CAS  Google Scholar 

  • MacDonald G et al (2000) Holocene treeline history and climate change across Northern Eurasia. Quat Res 53:302–311

    Google Scholar 

  • Malevskii-Malevich SP, Mol’kentin EK, Nadezhina ED, Semioshina AA, Sall’ IA, Khlebnikova EI, Shklyarevich OB (2007) Analysis of changes in fire-hazard conditions in the forests in Russia in the 20th and 21st centuries on the basis of climate modeling. Russ Meteorol Hydrol 32(3):154–161

    Google Scholar 

  • Manabe S, Wetherald RT, Stouffer RJ (1981) Summer dryness due to an increase of atmospheric CO2 concentration. Clim Chang 3:347–386

    CAS  Google Scholar 

  • Mangerud J, Andersen ST, Berglund BE, Donner JJ (1974) Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3:109–128

    Google Scholar 

  • Marchenko SS, Romanovsky VE, Tipenko G (2008) Numerical modeling of spatial permafrost dynamics in Alaska. In: Proceedings of the ninth international conference on permafrost, 29 June–3 July 2008, Fairbanks, Alaska. Institute of Northern Engineering, University of Alaska, Fairbanks

    Google Scholar 

  • Martyanova GN (1970) Turbulent heat and water exchange in steppes of Transbaikalia. In: Bachurin GV, Nechaeva EC, Snytko VA (eds) Proceedings of the conference on topological heat, water and matter exchange in geosystems. Institute of Geography, Sib Branch, USSR Academy of Science, Irkutsk, pp 9–12

    Google Scholar 

  • Mazhitova GG, Kaverin DA (2007) Thaw depth dynamics and soil surface subsidence at a circumpolar active layer monitoring (CALM) site, the European North of Russia. Kriosfera Zemli 11(4):20–30

    Google Scholar 

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteor Soc 88:1383–1394

    Google Scholar 

  • Meleshko VP, Govorkova VA, Kattsov VM, Malevskii-Malevich SP, Nadezhina ED, Sporyshev PV, Golitsyn GS, Demchenko PF, Eliseev AV, Mokhov II, Semenov VA, Khon VC (2004) Anthropogenic climate change in Russia in the twenty-first century: an ensemble of climate model projections. Russ Meteorol Hydrol 29(4):22–30

    Google Scholar 

  • Meleshko VP, Kattsov VM, Mirvis VM, Govorkova VA, Pavlova TV (2008a) Climate of Russia in the 21st century. Part 1. New evidence of anthropogenic climate change and the state of the Art of its simulation. Russ Meteorol Hydrol 33(6):341–350

    Google Scholar 

  • Meleshko VP, Kattsov VM, Govorkova VA, Sporyshev PV, Shkol’nik IM, Shneerov BE (2008b) Climate of Russia in the 21st century. Part 3. Future climate changes calculated with an ensemble of coupled atmosphere-ocean general circulation CMIP3 models. Russ Meteorol Hydrol 33(9):541–552

    Google Scholar 

  • Meshcherskaya AV, Blazhevich VG (1997) The drought and excessive moisture indices in a historical perspective in the principal grain-producing regions of the former Soviet Union. J Climate 10:2670–2682

    Google Scholar 

  • Mironenko ON, Savina LN (1975) On the vegetation history of Central Siberia at its northern boundary. In: History of Siberian forest, Siberian branch of the Russian Academy of Science. V.N. Sukachev Inst. of Forest, Krasnoyarsk, pp 37–59 (In Russian)

    Google Scholar 

  • Mokhov II, Chernokulsky AV (2010) Regional model assessments of forest fire risks in the Asian part of Russia under climate change. Geogr Nat Resour 31(2):165–169

    Google Scholar 

  • Mokhov I, Khon V (2002a) Hydrological regime in basins of Siberian rivers: model estimates of changes in the 21st century. Russ Meteorol Hydrol 27(8):77–93

    Google Scholar 

  • Mokhov I, Khon V (2002b) Model scenarios of changes in the runoff of Siberian rivers in the 21st century. Doklady Earth Sci 383(3):329–332

    Google Scholar 

  • Mokhov I, Semenov V, Khon V (2003) Estimates of possible regional hydrologic regime changes in the 21st century based on global climate models. Izvestiya Atmos Ocean Phys 39(2):130–144

    Google Scholar 

  • Mokhov II, Dufresne J-L, Le Treut H, Tikhonov VA, Chernokulsky AV (2005a) Changes in drought and bioproductivity regimes in land ecosystems in regions of northern Eurasia based on calculations using a global climatic model with carbon. Doklady Earth Sci 405(6):810–814

    Google Scholar 

  • Mokhov II, Semenov VA, Khon VCh, Roeckner E (2005b) Extreme precipitation regimes in northern Eurasia in the 20th century and their possible changes in the 21st century. Doklady Earth Sci 403(5):767–770

    CAS  Google Scholar 

  • Mokhov II, Semenov VA, Khon VCh, Roeckner E (2006) Possible regional changes in precipitation regimes in northern Eurasia in the 21st century. Water Resour 33(6):702–710

    CAS  Google Scholar 

  • Mokhov II, Chernokul’skii AV, Akperov MG, Dufresne J-L, Le Treut H (2009) Variations in the characteristics of cyclonic activity and cloudiness in the atmosphere of extratropical latitudes of the northern hemisphere based from model calculations compared with the data of the reanalysis and satellite data. Doklady Earth Sci 424(1):147–150

    CAS  Google Scholar 

  • Monserud RA, Tchebakova NM, Kolchugina TP, Denissenko OV (1995) Change in phytomass and net primary productivity for Siberia from the Mid-Holocene to the present. Glob Biogeochem Cycle 9:213–226

    CAS  Google Scholar 

  • Nakicenovic N, Davidson O, Davis G, Grubler A, Kram T, Lebre La Rovere E, Metz B, Morita T, Pepper W, Pitcher H, Sankovski A, Shukla P, Swart R, Watson R, Dadi Z (2000) Emissions scenarios, special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 599 pp

    Google Scholar 

  • National Climatic Data Center (NCDC) (2005) Data documentation for dataset 9813. Raw, homogenized, and bias-free daily precipitation for the former USSR and Russia, 14 pp [Available at http://www1.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/td9813.pdf]

  • National Climatic Data Center (NCDC) (2010) DSI-9808 “Snow depth and ice crust at snow courses of the Russian Federation during the 1966–2009 period”. Data set description is available from NOAA National Climatic Data Center, Asheville, NC

    Google Scholar 

  • Naurzbaev MM, Vaganov EA, Sidorova OV, Schweingruber FH (2002) Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12:727–736

    Google Scholar 

  • Nelson FE, Anisimov OA, Shiklomanov NI (2002) Climate change and hazard zonation in the Circum-Arctic permafrost regions. Nat Hazard 26:203–225

    Google Scholar 

  • Nesterov VG (1949) Forest fire potential and methods of its determination. Goslesbumizdat Publishing House, Moscow (in Russian)

    Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Climate 13:2217–2238

    Google Scholar 

  • Nikol’skaya MB (1980) Paleobotanic characteristics of the Upper Pleistocene and Holocene deposits on the Taymyr. In: Volkova VS (ed) Paleopalinologia Sibiri. Nauka, Moscow pp 97–111 (In Russian)

    Google Scholar 

  • Nohara D, Kiton A, Hosaka M, Oki T (2006) Impact of climate change on river runoff. J Hydrometeorol 7:1076–1089

    Google Scholar 

  • Oberman N (2008) Contemporary permafrost degradation of European North of Russia. In: Proceedings of the ninth international conference on permafrost, vol 2, June 29–July 3, Fairbanks, Alaska, pp 1305–1310

    Google Scholar 

  • Ohta T (2010) Hydrological aspects in a Siberian larch forest. In: Osawa A et al (eds) Permafrost ecosystems: Siberian larch forests. Springer, Dordrecht, pp 245–269

    Google Scholar 

  • Orlova LA, Panychev VA (1989) Radiocarbon dating of podzolic soils with second humus horizon. In: Regional stratigraphy of Siberia and Far East. Nauka, Novosibirsk, pp 125–135 (in Russian)

    Google Scholar 

  • Osborn TJ, Briffa KR (2006) The spatial extent of 20th century warmth in the context of the past 1200 years. Science 311(5762):841–844

    CAS  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research Paper No. 45. U.S. Weather Bureau. [NOAA Library and Information Services Division, Washington, DC 20852]

    Google Scholar 

  • Pavlov AV (1984) Energy exchange in the landscape sphere of the Earth. Nauka, Novosibrsk, 256 pp (in Russian)

    Google Scholar 

  • Peteet D, Andreev A, Bardeen W, Mistretta F (1998) Long-term Arctic peatland dynamics, vegetation, and climatic history of the Pur-Taz regions, West Siberia. Boreas 27:115–126

    Google Scholar 

  • Pozdnyakov LK (1993) Forestry on permafrost. Nauka, Novosibirsk, 192 pp (In Russian)

    Google Scholar 

  • Prentice IC, Guiot J, Huntley B, Jolly D, Cheddadi R (1996) Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6Ka. Clim Dyn 12:185–196

    Google Scholar 

  • Proshutinsky A, Ashik I, Hakkinen S, Hunke E, Krishfield R, Maltrud M, Maslowski W, Zhang J (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res 112:C04S08. doi:10.10292006JC003916

    Google Scholar 

  • P’yavchenko NI (1983) About age of peat deposits and Holocene change of vegetation in the south of West Siberia. Bull Comm Investig Quat period 52:164–170 (in Russian)

    Google Scholar 

  • Rawlings MA, 29 Co-Authors (2010) Analysis of the arctic system for freshwater cycle intensification: observations and expectations. J Climate 23:5715–5737

    Google Scholar 

  • Robinson DA, Dewey KF, Heim R Jr (1993) Global snow cover monitoring: an update. Bull Am Meteorol Soc 74:1689–1696

    Google Scholar 

  • Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21:136–155

    Google Scholar 

  • Roser C, Montagnani L, Schulze ED, Mollicone D, Kolle O, Meroni M, Papale D, Belelli Marchesini L, Federici S, Valentini R (2002) Net CO2 exchange rates in three different successional stages of the “Dark Taiga” of central Siberia. Tellus B 54:642–654. doi: 10.1034/j.1600-0889.2002.01351.x

    Google Scholar 

  • Russian Assessment Report (2008) In: Meleshko VP, Semenov SM (eds) Russian assessment report on climate change and its impact on the Russian territory. Technical summary. VNIIGMI-MCD, Moscow, 92 pp (in Russian)

    Google Scholar 

  • Savina SS, Khotinsky NA (1982) Zonal method of reconstruction of paleoclimates of the Holocene. In: Velichko AA (ed) Development of nature on the territory of USSR in the late Pleistocene and the Holocene. Nauka, Moscow, pp 179–186 (in Russian)

    Google Scholar 

  • Savina SS, Khotinsky NA (1984) Holocene paleoclimatic reconstructions based on the zonal method. Late Quaternary environments of the Soviet Union. In: Velichko AA, Wright HE Jr, Barnosky CW (eds) Late Quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 287–296

    Google Scholar 

  • Savina LN, Koshkarova VL (1981) In: Yamskikh AF (ed) Natural conditions of the Minusink basin. Krasnoyarsk Pedagogical Institute, Krasnoyarsk, pp 101–110

    Google Scholar 

  • Schulze E-D, 21 Co-Authors (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink – a synthesis. Glob Change Biol 5:703–722

    Google Scholar 

  • Serreze MC, Francis JA (2006) The arctic amplification debate. Clim Chang 76(3–4):241–264

    CAS  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. The Cryosphere 3:11–19

    Google Scholar 

  • Shahgedanova M (2003) The physical geography of northern Eurasia. Oxford University Press, Oxford, 571 pp

    Google Scholar 

  • Sherstyukov BG, Razuvaev VN, Bulygina ON, Groisman PYa (2007) NEESPI Science and Data Support Center for Hydrometeorological Information in Obninsk, Russia. Environ Res Lett 2, 045010:2. doi:10.1088/1748-9326/2/4/045010

  • Shichi K, Takahara H, Krivonogov SK, Bezrukova EV, Kashiwaya K, Takehara A (2009) Vegetation and climate records for the last 50 kir from Lake Kotokel, the middle Lake Baikal area, East Siberia. Quat Int 205:98–110

    Google Scholar 

  • Shiklomanov AI, Lammers RB (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4. 045015 (9 pp) doi: 10.1088/1748-9326/4/4/045015

  • Shiklomanov IA, Shiklomanov AI (2003) Climatic change and dynamics of river discharge into the Arctic Ocean. Water Resour 30(6):593–601

    CAS  Google Scholar 

  • Shiklomanov NI, Nelson FE, Streletskiy DA, Hinkel KM, Brown J (2008) The circumpolar active layer monitoring (CALM) program: data collection, management, and dissemination strategies. In: Kane DL, Hinkel KM (eds) Proceedings of the ninth international conference on permafrost, vol 2, Fairbanks Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, June 29–July 3 2008, pp 1647–1652

    Google Scholar 

  • Shkol’nik IM, Mol’kentin EK, Nadezhina ED, Khlebnikova EI, Sall IA (2008) Temperature extremes and wildfires in Siberia in the 21st century: the MGO regional climate model simulation. Russ Meteorol Hydrol 33(3):135–142

    Google Scholar 

  • Shmakin AB (2010) Climatic characteristics of snow cover over North Eurasia and their change during the last decades. Ice Snow 1(1):43–57

    Google Scholar 

  • Shnitnikov AV (1951) Variability of solar radiation during historical epoch on the base of it’s Earth’s manifestations. Bull Comm Investig Sun 7(21):47–70 (in Russian)

    Google Scholar 

  • Shumilova LV (1962) Botanical geography of Siberia. Tomsk University Press, Tomsk, 439 pp (in Russian)

    Google Scholar 

  • Shver TsA (1976) Atmospheric precipitation over the USSR territory (in Russian). Gidrometeoizdat, Leningrad, 302 pp

    Google Scholar 

  • Smith CL, Baker A, Fairchild IJ, Frisia S, Borsato A (2006) Reconstructing hemispheric-scale climates from multiple stalagmite records. Int J Climatol 26(10):1417–1424

    Google Scholar 

  • Soja AJ, Tchebakova NM, French NH, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Chapin FS III (2007) Climate-induced boreal forest change: predictions versus current observations. Glob Planet Change 56:274–296

    Google Scholar 

  • Sun B, Groisman PYa (2000) Cloudiness variations over the former Soviet Union. Int J Climatol 20:1097–1111

    Google Scholar 

  • Tarasov PE, Jolly D, Kaplan JO (1997) A continuous Late Glacial and Holocene record of vegetation changes in Kazakhstan. Palaeogeogr Palaeoclimatol Palaeoecol 136:281–292

    Google Scholar 

  • Tarasov PE, Bezrukova EV, Krivonogov SK (2009) Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel. Clim Past 5:285–295

    Google Scholar 

  • Tchebakova NM, Monserud RA, Nazimova DI (1994) A Siberian vegetation model based on climatic parameters. Can J Forest Res 24:1597–1607

    Google Scholar 

  • Tchebakova NM, Kolle O, Zolotukhine D, Lloyd J, Arneth A, Parfenova EI, Schulze E-D (2002) Annual and seasonal dynamics of energy and mass exchange in a middle taiga pine forest. In: Pleshikov FI (ed) Forest ecosystems of the Yenisei meridian. SB RAS Publishers, Novosibirsk, pp 252–264

    Google Scholar 

  • Tchebakova NM, Parfenova E, Soja А (2009a) Effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett 4. 045013 (9 pp) doi:10.1088/1748-9326/4/4/045013

  • Tchebakova NM, Blyakharchuk TA, Parfenova EI (2009b) Reconstruction and prediction of climate and vegetation change in the Holocene in the Altai-Sayan Mts, central Asia. Environ Res Lett 4. 045025 (11 pp) doi:10.1088/1748-9326/4/4/045025

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Ser A 364(1857):2053–2075

    Google Scholar 

  • Tipenko GS, Marchenko S, Romanovsky VE, Groshev V, Sazonova T (2004) Spatially distributed model of permafrost dynamics in Alaska. Presented at the AGU Fall Meeting. San Francisco, CA, 13–17 Dec 2004. EOS 85:C12A-02

    Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138. doi:10.3354/cr00953

    Google Scholar 

  • Turner JA, Lawson BD (1978) Weather in the Canadian forest fire danger rating system. A user guide to national standards and practices. Environment Canada, Pacific Forest Research Centre, Victoria, BC. BC-X-177

    Google Scholar 

  • Vaganov EA, Shiyatov SG, Mazepa VS (1996) Dendroclimatic study in Ural-Siberian subarctic. Nauka, Novosibirsk, 246 pp

    Google Scholar 

  • van Geel B, Bokovenko NA, Burova ND, Chugunov KV, Dergachev VA, Dirksen VG, Kulkova M, Nagler A, Parzinger H, van der Plicht J, Visiliev SS, Zaitseva GI (2004) Climate change and the expansion of the Scythian culture after 850 BC: a hypothesis. J Archaeol Sci 31(12):1735–1742

    Google Scholar 

  • Vannari PI (1911) Meteorological networks in Russia and other countries. Issue of Meteorological Papers in the Memory of the Chief of the Meteorological Committee of Imperator Russian Geographical Society A.I. Voeikov 1:51–64 (in Russian)

    Google Scholar 

  • Velichko AA (1989) The Holocene like element of global natural processes. In: Velicko AA (ed) Paleoclimates of the late Glacial and the Holocene. Nauka, Moscow, pp 2–12 (in Russian)

    Google Scholar 

  • Velichko AA (ed) (2010) Atlas-monograph “evolution of landscapes and climates of Northern Eurasia”. Late Pleistocene – Holocene – elements of prognosis. Issue 3. GEOS, Moscow, 220 pp

    Google Scholar 

  • Velichko AA, Klimanov VA, Borzenkova II (1992) Climates between 6,000 and 5,500 yr BP. In: Frenzel B, Pecsi M, Velichko AA (eds) Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere (Late Pleistocene – Holocene). Geographical Research Institute/Gustav Fischer Verlag, Budapest/Stutgart, p 65, 69, 73, 77, 137–139

    Google Scholar 

  • Velichko AA, Andreev AA, Klimanov VA (1997) Climate and vegetation dynamics in the tundra and forest zone during the late Glacial and Holocene. Quat Int 41(42):71–96

    Google Scholar 

  • Vinnikov KYa, Groisman PYa, Lugina KM (1990) The empirical data on modern global climate changes (temperature and precipitation). J Climate 3(6):662–677

    Google Scholar 

  • Volkova VS, Klimanov VA (1988) Palynology and climate of West Siberia during main thermal maximums of the Holocene (8500, 5500, 3500 yr. BP). In: Shatski SB (ed) Microfissils and stratigraphy of Mesozoic and Cenozoic of Siberia. Nauka, Novisibirsk, pp 91–99

    Google Scholar 

  • Volkova VS, Levina TP (1985) The Holocene like model for investigation of interglacial epoch of West Siberia. In: Khlonov AF (ed) Palynostratigraphy of the Mesozoic and Cenozoic of Siberia. Nauka, Novosibirsk, pp 74–84 (in Russian)

    Google Scholar 

  • Vygodskaya NN, Groisman PYa, Tchebakova NM, Kurbatova JA, Panfyorov O, Parfenova EI, Sogachev AF (2007) Ecosystems and climate interactions in the boreal zone of Northern Eurasia. Environ Res Lett 2, 045033: 7. doi:10.1088/1748-9326/2/4/045033

  • Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agr Forest Meteorol 100:1–18

    Google Scholar 

  • Wilson R, D’Arrigo R, Buckley B, Büntgen U, Esper J, Frank D, Luckman B, Payette S, Vose R, Youngblut D (2007) A matter of divergence: tracking recent warming at hemispheric scales using tree ring data. J Geophys Res 112:D17103. doi:10.1029/2006JD008318

    Google Scholar 

  • Wu X, Lin Z (1988) In: Zhang J (ed) The reconstruction of climate in China for historical times. Science Press, Beijing, pp 114–128

    Google Scholar 

  • Yamskikh AF, Sulerzhitsky LD, Abramova GM, Zubareva GY (1981) Paleogeographic conditions of forming of the Bolshoi Kemchug River Valley. In: Yamskikh AF (ed) Natural conditions of the Minusink Hollow. Krasnoyarsk Pedagogical Institute Press, Krasnoyarsk, pp 101–112

    Google Scholar 

  • Yamskikh GY (1995) Holocene vegetation and climate of the Minusinsk Hollow. University of Krasnoyarsk Press, Krasnoyarsk, 180 pp

    Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701

    Google Scholar 

  • Zhdanko VA (1965) Scientific basis of development of regional scales and their importance for forest fire management. In: Melekhov IS (ed) Contemporary problems of forest protection from fire and firefighting. Lesnaya Promyshlennost’ Publishers, Moscow, pp 53–86 (in Russian)

    Google Scholar 

  • Zolina OG, Simmer C, Belyaev K, Kapala A, Gulev S (2009) Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J Hydrometeorol 10:701–716

    Google Scholar 

  • Zolina O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Lett 37:L06704. doi:10.1029/2010GL042468

    Google Scholar 

  • Zubakov VA (1986) Global climate events of the Pleistocene. Gidrometeoizdat, Leningrad, 287 pp (in Russian)

    Google Scholar 

  • Zubakov VA, Borzenkova II (1990) Global paleoclimate of the late cenozoic. Ser Dev Paleontol 12:456. Elsevier, Amsterdam etc.

    Google Scholar 

  • Zubareva GYu (1987) Change of paleoclimate of south-Minusinsk hollow in the late Holocene. In: Yamskikh AF (ed) Paleogeography of the Central Siberia. Krasnoyarsk Pedagogical Institute Press, Krasnoyarsk, pp 41–64

    Google Scholar 

Supplementary References

  • Girs AA (1974) Macrocirculation method of long term forecasts. Gidrometeoizdat, Leningrad, 488 pp (in Russian)

    Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: Review and synthesis. J Hydrol 319(1–4):83–95

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1990) In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change. The IPCC scientific assessment. Cambridge University Press, New York, 362 pp

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1996) In: Houghton JT, Meira Filho LG, Callendar BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. The second IPCC scientific assessment. Cambridge University Press, New York, 572 pp

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2000) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of Working Group 1 to the third IPCC scientific assessment. Cambridge University Press, Cambridge/New York, 881 pp

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, 996 pp

    Google Scholar 

  • Manabe S, Wetherald RT, Milly PCD, Delworth TL, Stouffer RJ (2004) Century-scale change in water availability: CO2-quadrupling experiment. Clim Chang 64:59–76

    Google Scholar 

  • Shkolnik IM, Meleshko VP, Pavlova TV (2000) Hydrodynamical limited area model for climate studies over Russia. Russ Meteorol Hydrol 4:32–49

    Google Scholar 

  • Shkolnik IM, Meleshko VP, Gavrilina VM (2005) Validation of the MGO regional climate model. Russ Meteorol Hydrol 1:9–19

    Google Scholar 

  • Shkolnik IM, Molkentin EK, Nadezhina ED, Khlebnikova EI, Sall IA (2008) Temperature extremes and wildfires in Siberia in the 21st century: MGO regional climate model simulation. Russ Meteorol Hydrol 3:5–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ya. Groisman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Groisman, P.Y. et al. (2013). Climate Changes in Siberia. In: Groisman, P., Gutman, G. (eds) Regional Environmental Changes in Siberia and Their Global Consequences. Springer Environmental Science and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4569-8_3

Download citation

Publish with us

Policies and ethics