Skip to main content

Effects of Body Positions on Respiratory Muscle Activation During Maximal Inspiratory Maneuvers

  • Conference paper
  • First Online:
Respiratory Regulation - The Molecular Approach

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 756))

Abstract

We evaluated the maximal mouth inspiratory pressure and the EMG patterns of major respiratory and accessory muscles used in the generation of voluntary inspiratory maneuvers during different body positions. Ten healthy subjects (F/M-4/6), the mean age 22.000B10.6 years, participated in the study. The maximal inspiratory mouth pressure (MIP) during Müller’s maneuver was measured from residual volume in the standing, sitting, right-sided (RSL) and left-sided lying (LSL), supine, and head-down-tilt (HDT) (3000B0; relatively horizon) positions. EMG of the diaphragmatic (D), parasternal (PS), sternocleidomastoid (SM), and genioglossus (GG) muscles were assessed in each body position. The baseline MIP was 105.3 00B1; 12.0 in men and 59.9 00B110.1 cmH2O in women in the standing position and did not appreciable differ in the other positions, except the HDT where it was lower by 23 and 27% in men and women, respectively (P003C0.05). During Müllers maneuver, diaphragmatic EMG activity also was similar in all the body positions, but it was significantly enhanced in the HDT. In contrast, PS EMG showed the highest level of activation in the standing position, taken as the control, reference level, and was lower in the HDT. Activation of SM during the maneuver was near the control in the sitting position, lower in the supine (79%), RSL (85%), LSL (80%), and HDT (72%) positions (P 003C0.05). GG EMG was significantly greater during maximal inspiratory effort in the supine and HDT positions (125and 130%, respectively), while it was lower in the sitting, LRS, and LLS positions (76, 57, and 43%) compared with standing (P 003C; 0.05). We conclude that the inspiratory pressure generated during Muller maneuver is a reflection of complex interactions between several muscle groups during changes in body positions.

Conflicts of interest : The authors declare no conflicts of interest in relation to this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akahoshi, T., White, D. P., Edwards, J. K., Beauregard, J., & Shea, S. A. (2001). Phasic mechanoreceptor stimuli can induce phasic activation of upper airway muscles in humans. The Journal of Physiology, 531, 677–691.

    Article  PubMed  CAS  Google Scholar 

  • Aminoff, M. J., & Sears, T. A. (1971). Spinal integration of segmental, cortical and breathing inputs to thoracic respiratory motoneurons. The Journal of Physiology, 215, 557–575.

    PubMed  CAS  Google Scholar 

  • ATS/ERS. (2002). ATS/ERS statement on respiratory muscle testing. American Journal of Respiratory and Critical Care Medicine, 166, 518–624.

    Article  Google Scholar 

  • Badr, C., Elkins, M. R., & Ellis, E. R. (2002). The effect of body position on maximal expiratory pressure and flow. The Australian Journal of Physiotherapy, 48, 95–102.

    PubMed  Google Scholar 

  • Bellingham, M. C. (1999). Synaptic inhibition of cat phrenic motoneurons by internal intercostal nerve stimulation. Journal of Neurophysiology, 82, 1224–1232.

    PubMed  CAS  Google Scholar 

  • Black, L. F., & Hyatt, R. E. (1969). Maximal respiratory pressures: Normal values and relationships to age and sex. American Review of Respiratory Disease, 99, 696–702.

    PubMed  CAS  Google Scholar 

  • Castile, R., Mead, J., Jackson, A., Wohl, M. E., & Stokes, D. (1982). Effects of posture on flow volume curve configuration in normal humans. Journal of Applied Physiology, 53, 1175–1183.

    PubMed  CAS  Google Scholar 

  • Charfi, M. R., Matran, R., Regnard, J., Richard, M. O., Champeau, J., Dall’ava, J., & Lockhart, A. (1991). Maximal ventilatory pressure through the mouth in adults: Normal values and explanatory variables. Revue des Maladies Respiratoires, 8, 367–374.

    PubMed  CAS  Google Scholar 

  • Decramer, M., Lacquet, L. M., Fagard, R., & Rogiers, P. (1994). Corticosteroids contribute to muscle weakness in chronic airflow obstruction. American Journal of Respiratory and Critical Care Medicine, 150, 11–16.

    PubMed  CAS  Google Scholar 

  • DiMarco, A. F., & Kowalski, K. E. (2009). High frequency spinal cord stimulation of inspiratory muscles in dogs: A new method of inspiratory muscle pacing. Journal of Applied Physiology, 107, 662–669.

    Article  PubMed  Google Scholar 

  • Druz, W. S., & Sharp, J. T. (1981). Activity of respiratory muscles in upright and recumbent humans. Journal of Applied Physiology, 51, 1552–1561.

    PubMed  CAS  Google Scholar 

  • Enright, P. L., Kronmal, R. A., Manolio, T. A., Schenker, M. B., & Hyatt, R. E. (1994). Respiratory muscle strength in the elderly: Correlates and reference values; Cardiovascular Health Study Research Group. American Journal of Respiratory and Critical Care Medicine, 149, 430–438.

    PubMed  CAS  Google Scholar 

  • Estenne, M., Yernault, J. C., & de Troyer, A. (1985). Rib cage and diaphragm-abdomen compliance in humans: Effects of age and posture. Journal of Applied Physiology, 59, 1842–1848.

    PubMed  CAS  Google Scholar 

  • Evans, J. A., & Whitelaw, W. A. (2009). The assessment of maximal respiratory mouth pressures in adults. Respiratory Care, 54, 1348–1359.

    PubMed  Google Scholar 

  • Fiz, J. A., Texido, A., Izquierdo, J., Ruiz, J., Roig, J., & Morera, J. (1990). Postural variation of the maximum inspiratory and expiratory pressure in normal subjects. Chest, 97, 313–314.

    Article  PubMed  CAS  Google Scholar 

  • Gandevia, S. C., & Plassman, B. L. (1988). Responses in human intercostal and truncal muscles to motor cortical and spinal stimulation. Respiration Physiology, 73, 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Hautmann, H., Hefele, S., Schotten, K., & Huber, R. M. (2000). Maximal inspiratory mouth pressures in healthy subjects: What is the lower limit of normal? Respiratory Medicine, 94, 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, E. Z., Nowicky, A. V., & McConnell, A. K. (2007). Diaphragm and intercostal surface EMG and muscle performance. Respiratory Physiology & Neurobiology, 155, 213–219.

    Article  Google Scholar 

  • Heijdra, Y. F., Dekhuijzen, P. N. R., van Herwaarden, C. L. A., & Folgering, H. T. M. (1994). Effect of body position, hyperventilation, and blood gas tension on maximal respiratory pressures in patients with chronic obstructive pulmonary disease. Thorax, 49, 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, A. L., Butler, J. E., Gandevia, S. C., & De Troyer, A. (2010). Interplay between the inspiratory and postural functions of the human parasternal intercostal muscles. Journal of Neurophysiology, 103, 1622–1629.

    Article  PubMed  Google Scholar 

  • Koulouris, N., Mulvey, D. A., Laroche, C. M., Goldstone, J., Moxham, J., & Green, M. (1989). The effect of posture and abdominal binding on respiratory pressures. The European Respiratory Journal, 2, 961–965.

    PubMed  CAS  Google Scholar 

  • Kowalski, K. E., & DiMarco, A. F. (2009). Distribution of inspiratory drive to the external intercostal muscles during high frequency spinal cord stimulation. American Journal of Respiratory and Critical Care Medicine, 179, A4211. Abstract.

    Google Scholar 

  • Lagri, F., & Tobin, M. J. (2003). Disorders of the respiratory muscles. American Journal of Respiratory and Critical Care Medicine, 168, 10–48.

    Article  Google Scholar 

  • Leech, J. A., Chezzo, H., Stevens, D., & Becklake, M. R. (1983). Respiratory pressures and function in young adults. The American Review of Respiratory Disease, 128, 17–23.

    PubMed  CAS  Google Scholar 

  • McCool, F. D., & Leith, D. E. (1987). Pathophysiology of cough. Clinics in Chest Medicine, 8, 189–195.

    PubMed  CAS  Google Scholar 

  • Nava, S., Ambrosino, N., Crotti, P., Fracchia, C., & Rampulla, C. (1993). Recruitment of some respiratory muscles during three maximal inspiratory manoeuvres. Thorax, 48, 702–707.

    Article  PubMed  CAS  Google Scholar 

  • O’Nelly, S., & McCarthy, D. S. (1983). Postural relief of dyspnoea in severe chronic airflow limitation: Relationship to respiratory muscle strength. Thorax, 38, 595–600.

    Article  Google Scholar 

  • Sachs, M. C., Enright, P. L., Stukovsky, K. D. H., Jiang, R., & Barr, R. G. (2009). Performance of maximum inspiratory pressure tests and maximum inspiratory pressure reference equations for 4 race/ethnic groups. Respiratory Care, 54, 1321–1328.

    PubMed  Google Scholar 

  • Troosters, T., Gosselink, R., & Decramer, M. (2005). Respiratory muscle assessment. In R. Gosselink & H. Stam (Eds.), Lung function (European respiratory monograph, Vol. 31, pp. 57–71). Wakefield: European Respiratory Society.

    Google Scholar 

  • Wilson, S. H., Cooke, N. T., Edwards, R. N. T., & Spiro, S. G. (1984). Predicted normal values for maximal respiratory pressures in Caucasian adults and children. Thorax, 39, 535–538.

    Article  PubMed  CAS  Google Scholar 

  • Windisch, W., Henning, E., Sorichter, S., Hamm, H., & Griee, C. P. (2004). Peak or plateau maximal inspiratory mouth pressure: Which is best? The European Respiratory Journal, 23, 708–713.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Segizbaeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Segizbaeva, M.O., Pogodin, M.A., Aleksandrova, N.P. (2013). Effects of Body Positions on Respiratory Muscle Activation During Maximal Inspiratory Maneuvers. In: Pokorski, M. (eds) Respiratory Regulation - The Molecular Approach. Advances in Experimental Medicine and Biology, vol 756. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4549-0_43

Download citation

Publish with us

Policies and ethics