Skip to main content

Model-Based Design of Superior Cell Factory: An Illustrative Example of Penicillium chrysogenum

  • Chapter
  • First Online:
Systems Metabolic Engineering

Abstract

A dynamic model for metabolic reaction network of Penicillium chrysogenum, coupling the central metabolism to growth, product formation and storage pathways is presented. In constructing the model, we started from an existing stoichiometric model, and systematically reduced this initial model to a one compartment model and further eliminated unidentifiabilities due to time scales. Kinetic analysis focuses on a time scale of seconds, thereby neglecting biosynthesis of new enzymes. We used linlog kinetics in representing the kinetic rate equations of each individual reaction. The final parameterization is performed for the final reduced model using previously published short term glucose perturbation data. The constructed model is a self-contained model in the sense that it can also predict the cofactor dynamics. Using the model, we calculated the Metabolic Control Analysis (MCA) parameters and found that the interplay among the growth, product formation and production of storage materials is strongly governed by the energy budget in the cell, which is in agreement with the previous findings. The model predictions and experimental observations agree reasonably well for most of the metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canelas A, van Gulik WM, Heijnen JJ (2008) Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng 100(4):734–743

    Article  PubMed  CAS  Google Scholar 

  2. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79(1):53–73

    Article  PubMed  CAS  Google Scholar 

  3. Christensen B, Nielsen J (2000) Metabolic network analysis of Penicillium chrysogenum using 13 C-labeled glucose. Biotechnol Bioeng 68(6):652–659

    Article  PubMed  CAS  Google Scholar 

  4. Demin O, Goryanin I (2008) Kinetic modelling in systems biology, Chapman & hall/CRC mathematical & computational biology. Taylor & Francis Ltd, Hoboken

    Google Scholar 

  5. Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiaei ND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14(7):1298–1309

    Article  PubMed  CAS  Google Scholar 

  6. Galazzo JL, Bailey J (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 12(3):162–172

    Article  CAS  Google Scholar 

  7. Heijnen JJ (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91(5):534–545

    Article  PubMed  CAS  Google Scholar 

  8. Heinrich R, Schuster S (1996) The regulation of cellular systems. Springer

    Book  Google Scholar 

  9. Hynne F, Danø S, Sørensen P (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 94(1–2):121–163

    Article  PubMed  CAS  Google Scholar 

  10. Jørgensen H, Nielsen J, Villadsen J, Mollgaard H (2004) Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol Bioeng 42(2):117–131

    Google Scholar 

  11. Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7(3):296–307

    Article  PubMed  CAS  Google Scholar 

  12. Kitano H (2002) Computational systems biology. Nature 420(6912):206–210

    Article  PubMed  CAS  Google Scholar 

  13. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  PubMed  CAS  Google Scholar 

  14. Kleijn RJ, Liu F, van Winden WA, van Gulik WM, Ras C, Heijnen JJ (2007) Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum. Metab Eng 9(1):112–123

    Article  PubMed  CAS  Google Scholar 

  15. Kofahl B, Klipp E (2004) Modelling the dynamics of the yeast pheromone pathway. Yeast 21(10):831–850

    Article  PubMed  CAS  Google Scholar 

  16. Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3:41

    Article  PubMed  Google Scholar 

  17. Müller WH, van der Krift TP, Krouwer AJ, Wüsten HA, van der Voort LH, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10(2):489–495

    PubMed  Google Scholar 

  18. Nasution U, van Gulik WM, Proell A, van Winden WA, Heijnen JJ (2006) Generating short-term kinetic responses of primary metabolism of Penicillium chrysogenum through glucose perturbation in the bioscope mini reactor. Metab Eng 8(5):395–405

    Article  PubMed  CAS  Google Scholar 

  19. Nikerel Ä°E, van Winden WA, van Gulik WM, Heijnen JJ (2006) A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics. BMC Bioinformatics 7(540)

    Google Scholar 

  20. Nikerel İE, van Winden WA, Verheijen PJT, Heijnen JJ (2009) Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. Metab Eng 11:20–30

    Article  PubMed  CAS  Google Scholar 

  21. Palsson BO, Schellenberger J, Park JO, Conrad TM (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  PubMed  Google Scholar 

  22. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol Bioeng 55(4):592–608

    Article  PubMed  CAS  Google Scholar 

  23. Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47–49

    Article  PubMed  CAS  Google Scholar 

  24. Serrano L, Di Ventura B, Lemerle C, Michalodimitrakis K (2006) From in vivo to in silico biology and back. Nature 443(7111):527–533

    Article  PubMed  Google Scholar 

  25. Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267(17):5313–5329

    Article  PubMed  CAS  Google Scholar 

  26. Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214(1):31–37

    Article  PubMed  CAS  Google Scholar 

  27. Thykaer J, Christensen B, Nielsen J (2002) Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation. Metab Eng 4(2):151–158

    Article  PubMed  CAS  Google Scholar 

  28. van Gulik WM, Antoniewicz MR, de Laat WT, Vinke JL, Heijnen JJ (2001) Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnol Bioeng 72(2):185–193

    Article  Google Scholar 

  29. van Gulik WM, de Laat WTAM, Vinke JL, Heijnen JJ (2000) Application of metabolic flux analysis for the identification ofmetabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 68(6):602–618

    Article  PubMed  Google Scholar 

  30. van Winden WA, van Gulik WM, Schipper D, Verheijen PJT, Krabben P, Vinke JL, Heijnen JJ (2003) Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13 C, 1 H] COSY NMR measurements and cumulative bondomer simulation. Biotechnol Bioeng 83(1):75–92

    Article  PubMed  Google Scholar 

  31. Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1:128–140

    Article  PubMed  CAS  Google Scholar 

  32. Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5(3):164–176

    Article  PubMed  CAS  Google Scholar 

  33. Visser D, Schmid JW, Mauch K, Reuss M, Heijnen JJ (2004) Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metab Eng 6(4):378–390

    Article  PubMed  CAS  Google Scholar 

  34. Visser D, van Zuylen G, van Dam J, Oudshoorn A, Eman M, Ras C, van Gulik WM, Frank J, van Dedem G, Heijnen JJ (2002) Rapid sampling for analysis of \it in vivo kinetics using the BioScope: A system for continuous-pulse experiments. Biotechnol Bioeng 79:674–681

    Article  PubMed  CAS  Google Scholar 

  35. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  PubMed  CAS  Google Scholar 

  36. Weckwerth W (2010) Metabolomics: an integral technique in systems biology. Bioanalysis 2(4):829–836

    Article  PubMed  CAS  Google Scholar 

  37. Westerhoff HV, Bruggeman FJ (2007) The nature of systems biology. Trends Microbiol 15(1):45–50

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Emrah Nikerel .

Editor information

Editors and Affiliations

Appendix

Appendix

8.1.1 Nomenclature Used for Metabolites in the Model

Below is the nomenclature list for metabolites used in the model, following the names in van Gulik et al. [29]

13PG

1,3-Bisphosphoglycerate

glc

Glucose

2PG

2-Phosphoglycerate

gln

Glutamine

3PG

3-Phosphoglycerate

glu

Glutamate

6APA

6-Aminopenicillinic acid

gly

Glycine

6Pgluct

6-Phosphogluconate

GMP

Guanosine monophosphate

8HPA

8-Hydroxypenillic acid

H

Proton

aAd

a-Aminoadipate

H2O

Water

AApool

Pool of free amino acids

H2S

Hydrogen sulfide

AAprotsyn

Amino acids for protein synthesis

HCoA

Coenzyme A

Ac

Acetate

his

Histidine

AcCoA

Acetyl coenzyme A

homcys

Homocysteine

AcHomser

o-Acetylhomoserine

homser

Homoserine

ACV

d-(a-Aminoadipyl)-cysteinylvaline

iCitr

Isocitrate

ADP

Adenosine-5-diphosphate

ile

Isoleucine

aKG

a-Ketoglutarate

IMP

Inosine monophosphate

aKI

a-Ketoisovalerate

ino

Inositol

ala

Alanine

iPN

Isopenicilline

AMP

Adenosine-5-monophosphate

lano

Lanosterol

arg

Arginine

leu

Leucine

asn

Asparagine

linCoA

Linoleoyl coenzyme A

asp

Aspartate

lys

Lysine

ATP

Adenosine-5-triphosphate

m1P

Mannitol-1-phosphate

bIM

b-Isopropylmalate

mal

Malate

biomass

Average biomass composition of glucose-limited cultures

man

Mannitol

carbP

Carbamoylphosphate

met

Methionine

CDPDAcgcl

Cytidine diphosphate-diacylglyerol

METHF

Methylene tetrahydrofolate

chit

Chitine

meva

Mevalonate

chor

Chorismate

MYTHF

Methyltetrahydrofolate

citr

Citrate

NAD

Nicotinamide adenine dinucleotide (oxidized)

CMP

Cytidine monophosphate

NADH

Nicotinamide adenine dinucleotide (reduced)

CO2

Carbon dioxide

NADP

Nicotinamide adenine dinucleotide phosphate

ctl

CTP

cys

E4P

Citruline

Cytidine triphosphate

Cysteine

Erythrose-4-phosphate

NADPH

Nicotinamide adenine dinucleotide phosphate

  

NH4

Ammonia

  

O2

Oxygen

  

OAA

Oxaloacetate

ergo

Ergosterol

OPC

6-Oxopiperidine-2-carboxylic acid

ery

Erythritol

PAA

Phenylacetic acid

ESE

Ergosterolester

PAACoA

Phenylacetyl coenzyme A

ExPept

Excreted peptides

PAPS

3-Phosphoadenosine-5-phosphosulfate

f16P

Fructose-1,6-bisphosphate

penG

Penicillin-G

f6P

Fructose-6-phosphate

PEP

Phosphoenolpyruvate

FAD

Flavine adenine dinucleotide (oxidized)

PHchol

Phosphatidylcholine

FADH2

Flavine adenine dinucleotide (reduced)

phe

Phenylalanine

FTHF

Formyltetrahydrofolate

PHeta

Phosphatidylethanolamine

fum

Fumarate

PHino

Phosphatidylinositol

g6P

Glucose-6-phosphate

phospht

Phosphatidate

GAP

3-Phosphoglyceraldehyde

PHser

Phosphatidylserine

gcl3P

3-Phosphoglycerol

Pi

Orthophosphate

pro

Proline

PROT

Protein

PRPP

a-5-Phosphoribosylpyrophosphate

psacch

Polysaccharides

pyr

Pyruvate

Rib5P

Ribose-5-phosphate

Ribu5P

Ribulose-5-phosphate

RNA

Ribose nucleic acid

SAM

S-Adenosylmethionine

sed7P

Sedoheptulose-7-phosphate

ser

Serine

succ

Succinate

succCoA

Succinyl coenzyme A

t6P

Trehalose-6-phosphate

THF

Tetrahydrofolate

thr

Threonine

tre

Trehalose

trp

Tryptophane

tyr

Tyrosine

UDP

Uridine-5-diphosphate

UDPglc

Uridine-5-diphosphoglucose

UMP

Uridine monophosphate

UTP

Uridine triphosphate

val

Valine

Xylu5P

Xylulose-5-phosphate

8.1.2 Data for the Kinetic Model

In the following, three tables are specified the finally used reactions, the input data, the assumed equilibrium constants and data on metabolite concentrations.

Table 8.15 Assumed equilibrium constants
Table 8.16 Assumed metabolite concentrations

8.1.3 P/O Ratio Calculations

The reactions describing the oxidative phosphorylation in [29] have to be updated/adjusted not only because the mitochondria compartment has been removed, but also, in [28], the experimentally determined P/O parameter was 1.84. The P/O parameter is changed in such a way to have the same theoretical yields for the reduced model as the original model. Using the Herbert-Pirt substrate utilization equation as a quality assessment to these reduction steps, we compared the Herbert-Pirt equation for the three compartment and the one compartment model.

We first considered the stoichiometric network presented in [29], which consists of 155 metabolites and 156 reactions located in three compartments (cytosol, mitochondria and peroxisome). The Herbert-Pirt substrate utilization relation can be written as:

$$ {q_S} = 5.17{q_{\rm{Pen}}} + 0.288\mu + 1.37\,{10^{{ - 3}}} $$

The P/O value is calculated from reaction r6.1 and r6.4. The first adjustment is to multiply the theoretical stoichiometric coefficients of mitochondrial and cytosolic protons, with the ratio of the estimated P/O ratio to the maximum P/O ratio

$$ \begin{array}{lll} 8.360{H_m} + NAD{H_m} + 0.5{O_2}\;{{\longrightarrow}^{{l6.1}}}\;\;\;\,7.360{H_c} + {H_2}{O_c} +NA{D_m} \hfill \\5.416{H_m} + NAD{H_c} + 0.5{O_2}\;{{\longrightarrow}^{{l6.2}}}\;\;\;\,4.416{H_c} + {H_2}{O_c} +NA{D_c} \hfill \\4.416{H_m} + FAD{H_{{2,m}}} + 0.5{O_2}\;{{\longrightarrow}^{{l6.3}}}\;\;\;\,4.416{H_c} + {H_2}{O_c} +FA{D_m} \hfill \\ \end{array} $$

Subsequently the formation of ATP which is driven by the inward flux of cytosolic protons into the mitochondria (r6.4) is lumped with the water transport and the ADP/ATP shuttle (r10.3 and r10.1 respectively) in order to eliminate all mitochondrial reactants with exception of Hm.

$$\begin{array}{rll}&AD{P_m} + 4{H_c} + P{i_m}\quad \mathop{\longrightarrow}\limits^{{r6.4}}\;\quad AT{P_m} + 3{H_m} + {H_2}{O_m} \hfill \\ &AD{P_c} + AT{P_m}\quad \mathop{\longrightarrow}\limits^{{r10.1}}\quad AD{P_m} + AT{P_c} \hfill \\ &\frac{{{H_2}{O_m}\quad \mathop{\longrightarrow}\limits^{{r10.3}}}\quad {H_2}{O_c}}{{AD{P_c} + 4{H_c} + P{i_m} \mathop{\longrightarrow}\limits^{{l6.4}}\;\quad AT{P_c} + 3{H_m}{H_2}{O_c}}}\end{array}$$

The next step is to eliminate the H in reactions r6.1-3 using l6.4. This yields the following lumped reactions:

$$ \begin{array}{llll} {1.840AD{P_c} + 2.840{H_c} + NAD{H_m} + 0.5{O_{{2,c}}} + 1.840P{i_c}} &\!\! {{ \longrightarrow^{{l6.5}}}} & {1.840AT{P_c} + 2.84{H_2}{O_c} + NA{D_m}} \\{1.104AD{P_c} + 2.104{H_c} + NAD{H_c} + 0.5{O_{{2,c}}} + 1.104P{i_c}} &\!\! {{ \longrightarrow^{{l6.6}}}} & {1.104AT{P_c} + 2.104{H_2}{O_c} + NA{D_c}} \\{1.104AD{P_c} + 1.104{H_c} + FAD{H_{{2,m}}} + 0.5{O_{{2,c}}} + 1.104P{i_c}} &\!\! {{ \longrightarrow^{{l6.7}}}} & {1.104AT{P_c} + 2.104{H_2}{O_c} + FA{D_m}} \\\end{array} $$

Since the model does not contain any inner compartments, reactions l6.5 and l6.6 are parallel to each other, and are therefore lumped by averaging based on their steady state flux distribution (70.5–29.5% respectively). This yields the following lumped reaction:

$$ {1.623ADP + 2.623H + NADH + 0.5{O_2} + 1.623{P_i}\,{\longrightarrow^{{l6.8}}}\;\;\,\;1.623ATP + 2.623{H_2}O + NAD} $$

This shows that the P/O ratio in the simplified model became 1.623 mol ATP/mol O. It should be noted that, the remaining ATP-balance parameters i.e. Kx, KPenG, mATP are kept unchanged in considering black-box balances

After modifying the model, we calculated the substrate Herbert-Pirt equation for the one compartment model.

$$ {q_S} = 6.32{q_{\rm{Pen}}} + 0.291\mu + 2.22{q_{\rm{tre}}} + 1.74\,{10^{{ - 3}}} $$

We conclude that the obtained Herbert Pirt relation for the one compartment model is in agreement with the one for the three compartment model given the standard deviation in the ATP stoichiometry parameters.

8.1.4 Additional Details on the Identifiable Elasticities

List of identifiable elasticities as a function of the original parameters

l1.1

εP1 = ε1

r5.1

εP6 = ε33

 

εP2 = ε1

 

εP7 = ε33

 

εP10 = ε2

 

εpyr = ε31

 

εglc_f = ε3

 

εasp = ε32

r1.3

εP1 = ε4 + 1/8 ε5

l6.7

εP5 = ε35

 

εP2 = ε4 + 1/2 ε5

 

εP10 = ε34

 

εP10 = ε6

l6.9

εP3 = ε37

l1.3

εP1 = 1/4 ε7

 

εP10 = ε36

 

εP2 = ε7

r8.1

εP3 = ε39 + ε40

 

εP3 = ε7

 

εP8 = ε38

 

εP10 = −ε7

 

εP12 = ε40

 

εPEP = ε8

l11.1

εpyr = ε41

r1.9

εP1 =1/8 ε9

 

εile = ε42

 

εP2 =1/2 ε9

 

εval = ε43

 

εP10 = ε11

r11.2

εP8 = ε45

 

εPEP = ε10

 

εgln = ε44

r2.1

εP1 = ε12

l11.2

εP6 = ε50

 

εP2 = ε12

 

εP7 = ε50

 

εP10 = ε13

 

εpyr = ε46

 

εP11 = ε14

 

εile = ε47

r2.2

εP10 = ε16

 

εleu = ε48

 

εP11 = ε17

 

εval = ε49

 

ε6Pgluct = ε15

r11.3

εP8 = ε51

r4.1

εP3 = ε20

 

εP10 = ε53

 

εP6 = ε21

 

εpro = ε52

 

εP7 = ε21

l11.3

εP1 =1/3 ε55

 

εP10 = ε19

 

εP2 = ε55

 

εpyr = ε18

 

εPEP = ε54

r4.4

εP3 = ε22 + ε23

 

εtrp = ε56

 

εP4 = ε22

l11.4

εP1 =1/3 ε58

 

εP5 = ε22

 

εP2 = ε58

 

εP6 = ε22

 

εPEP = ε57

r4.7

εP3 = ε25 + ε26

 

εtyr = ε59

 

εP4 = ε25

l11.5

εP1 =1/3 ε61

 

εP5 = ε25

 

εP2 = ε61

 

εP7 = ε27

 

εPEP = ε60

 

εP8 = ε24

 

εphe = ε62

 

εP11 = ε24

r11.7

εP6 = ε66

r4.8

εP6 = ε29

 

εP7 = ε66

 

εP7 = ε29 + ε30

 

εP8 = ε63

 

εP10 = ε28

 

εP11 = ε63

   

εlys = ε64

   

εaAd = ε65

l11.7

εP9 = ε68

l13.2

εP1 =1/2 ε105

 

εP10 = ε69

 

εP2 = ε105

 

εcys = ε67

 

εP10 = ε108

r11.8

εlys = ε70

 

εasp = ε106

 

εaAd = ε71

 

εAMP = ε107

l11.8

εP10 = ε75

 

εGMP = ε109

 

εasp = ε72

l13.3

εP1 =1/2 ε110

 

εmet = ε73

 

εP2 = ε110

 

εthr = ε74

 

εasp = ε111

 

εhomcys = ε76

 

εAMP = ε112

r11.9

εP1 = 1/4 ε77

l13.4

εP1 = 1/2 ε113

 

εP2 = ε77

 

εP2 = ε113

 

εP3 = ε77 + ε81

 

εasp = ε114

 

εP8 = ε78 + ε79

 

εUTP = ε115

 

εP9 = ε80

r13.6

εCTP = ε116

 

εP10 = −ε77

 

εUTP = ε117

 

εP11 = ε78

r15.1

εP10 = ε118

l11.9

εasp = ε82

l17.1

εP1 = ε119

 

εcys = ε83

 

εP2 = ε119

 

εthr = ε84

 

εt6P = ε120

l11.10

εP1 = 1/2 ε85

 

εAMP = ε121

 

εP2 = ε85

l17.4

εP1 = ε123 + 1/8 ε122

 

εP10 = ε87

 

εP2 = ε123 + 1/2 ε122

 

εhis = ε86

 

εpsacch = ε124

l11.11

εP8 = ε88

 

εAMP = ε125

 

εorn = ε89

r17.7

εt6P = ε126

l11.12

εP10 = ε91

l17.6

εtre = ε127

 

εorn = ε90

l18.2

εP10 = ε128

r11.16

εP3 = ε92

l19.1

εP10 = ε134

 

εP4 = ε92

 

εcys = ε129

 

εP5 = ε92

 

εval = ε130

 

εasp = ε93

 

εaAd = ε131

r11.17

εasn = ε94

 

εPAA = ε132

 

εasp = ε95

 

εpenG = ε133

r11.20

εP3 = ε97

R9.14

εpsacch = ε135

 

εP12 = ε97

R9.8

εpenG = ε136

 

εmet = ε96

R9.11

εPAA_f = ε137

 

εhomcys = ε98

R9.1

εP10 = ε138

r11.21

εpyr = ε99

  
 

εile = ε100

  
 

εval = ε101

  

r11.22

εpyr = ε102

  
 

εala = ε103

  

r11.34

εP10 = ε104

  

8.1.5 Complete List of Estimated Elasticities

#ri.i

Representative transformation

Identifiable elasticities

l1.1

glc → g6P

P1(−0.01), P2(−0.01), P10(0.01), glcf(0.51)

r1.3

f6P → f16P

P1(−0.01), P2(−0.01), P10(−0.15)

r2.2

6PG → Ribu5P

P1(−1.00), 6PG(0.01), P11(2.11)

r4.1

pyr → AcCoA

P1(0.01), P2(0.02), P6(−17.60), P3(−0.01), pyr(0.02)

r4.4

iCitr → aKG

P3(5), P4(0.07), P5(1.16), P6(0.01)

r4.7

aKG → succCoA

P7(11.61), P11(0.01), P3(0.01)

r4.8

succCoA → succ

P8(1.28), P9(0.01), P11(0.01), P3(−0.01)

r5.1

pyr → OAA

P4(−0.01), P5(−0.01), pyr(0.01)

l6.7

H2 + O2 → H2O (FAD)

P5(−0.01), P10(−0.01)

l6.9

H2 + O2 → H2O (NADH)

P3(0.25), P10(−0.25)

r8.1

CO2 → gly

P8(0.01), P12(−1.67), P3(4.59)

l11.1

pyr → val

pyr(0.30), val(−11.99), ile(−3.65)

r11.2

glu → gln

P8(4.87), gln(−0.07)

l11.2

pyr → leu

P6(1.21), P7(0.01), ile(6.30), leu(3.24), val(−1.96), pyr(4.09)

r11.3

glu → pro

P8(8.66), pro(−8.95), P10(0.686)

l11.3

PEP → trp

PEP(2.87), trp(−0.01)

l11.4

PEP → tyr

P1(0.40), P2(0.12), tyr(−0.07), PEP(5.17)

l11.5

PEP → phe

P1(0.59), P2(0.26), phe(−1.89), PEP(3.26)

r11.7

glu → aAd

P6(0.01), P7(0.01), P8(2.05), lys(−1.86), aAd(−0.01)

l11.7

ser → cys

P9(1.11), cys(−0.01), P10(2.64)

r11.8

glu → lys

aAd(0.01), lys(−3.63)

l11.8

asp → homcys

asp(43.03), P10(−35.1), homcys(−0.91), met(18.7), thr(7.08)

r11.9

3PG → ser

P2(0.01), P8(2.33), P3(0.68)

l11.9

asp → thr

P11(−0.96), asp(12.57), cys(0.50), thr(−0.01)

l11.10

gln → his

P1(1.81), P2(0.26), P10(6.79)

l11.11

glu → orn

P8(0.01), orn(−0.01),

l11.12

orn → arg

orn(0.01), P10(0.01), gln(0.61), arg(−0.76)

r11.16

glu → asp

P4(0.83), P5(0.83), asp(−0.01), P3(12.77)

r11.17

asp → asn

asp(2.29), asn(−0.01)

r11.20

met → homcys

met(−0.01), homcys(−1.03)

r11.21

pyr → ile

P1(−0.76), P2(0.16), ile, val(−0.76), pyr(−0.84)

r11.22

pyr → ala

P1(5.32), P2(0.01), pyr(8.67), ala(−2.52)

r11.34

qExPept

P10(1)

l13.2

→ GMP

P1(2.43), P2(3.71), P4(−0.01), P5(−2.62), P10(−0.01), asp(30.69), GMP(−0.38)

l13.3

→ AMP

P1(0.20), P2(11.41), P4(−0.34), P5(−0.01), asp(53.4), AMP(−20.31)

l13.4

→ UTP

P1(2.54), P2(−5.37), asp(0.461), UTP(−0.74)

r13.6

→ CTP

UTP(1.10), CTP(−3.60)

r15.1

mATP

P10(1.00)

l17.1

g6P → t6P

P1(31.85), P2(35.38), t6P(−23.03)

l17.4

g1P → psacch

P1(7.05), P2(0.132), psacch(−0.01), AMP(0.53)

r17.7

t6P → tre

t6P(0.134)

l17.6

qtre

tre(0.91)

l18.2

m

P10(1.00)

l19.1

→ PenG

cys(1.00), val(1.00), aAd(1.00), P10(1.00), PenG(−0.50), PAA(1.00)

R9.14

qpsacch

psacch(1.00)

R9.8

qPenG

PenG(1.00)

R9.11

qPAA

PAAext(1.00)

R9.1

Hext →

P10(1.00)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nikerel, I.E., Verheijen, P.J.T., van Gulik, W.M., Heijnen, J.J. (2012). Model-Based Design of Superior Cell Factory: An Illustrative Example of Penicillium chrysogenum . In: Wittmann, C., Lee, S. (eds) Systems Metabolic Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4534-6_8

Download citation

Publish with us

Policies and ethics