Skip to main content

Identification and Sequence Analysis of Sulfate/Selenate Transporters in Selenium Hyper- and Non-accumulating Astragalus Plant Species

  • Conference paper
  • First Online:
Sulfur Metabolism in Plants

Abstract

Selenium is an essential element for human health, consumed mainly from plant sources. In plants, there is good evidence that selenate is transported via sulfate transporters, and that this anion will interact competitively with sulfate. Some of selenium (Se)-hyper-accumulating plant species belonging to the genus Astragalus are known for their capacity to accumulate up to 0.6% of their foliar dry weight as Se. Comparative analyses of sulfate transporter genes of contrasting Se hyper-accumulator and non-accumulator species will be helpful for a better understanding of sulfate/selenium uptake processes and provide insights on the substrate binding site for the transported anion. The gene family of sulfate transporters is subdivided into five groups with distinct and/or functional characteristics. cDNAs for sulfate transporters belonging to the Group 1, 2, 3 and 4 of the sulfate transporter families were isolated from both Se hyper-accumulating (Astragalus racemosus, Astragalus bisulfcatus, Astragalus crotalariae) and the closely related non-accumulating species (Astragalus glycophyllos, Astragalus drummondii). Sequence analysis was performed to identify sequence variations which may contribute to selectivity of sulfate and selenate uptake and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao FJ, Breward N, Harriman M, Tucker M (2006) Biofortification of UK crops with selenium. Proc Nutr Soc 65:169–181

    Article  PubMed  CAS  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1785–1798

    Article  Google Scholar 

  • Cabannes E, Buchner P, Broadley MR, Hawkesford MJ (2011) A comparison of sulfate and selenium accumulation in relation to expression of sulfate transporter genes in Astragalus species. Plant Physiol. doi:10.1104/pp. 111.183897

  • Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  CAS  Google Scholar 

  • Hawkesford MJ (2000) Plant responses to sulfur deficiency and the genetic manipulation of sulfate transporters to improve S-utilization efficiency. J Exp Bot 51:131–138

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family – redundancy or specialization? Physiol Plant 117:155–165

    Article  CAS  Google Scholar 

  • Kopsell DA, Kopsell DE (2007) Selenium. In: Barker AE, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press Book, New York, pp 515–549

    Google Scholar 

  • Läuchli A (1993) Selenium in plants: uptake, functions, and environmental toxicity. Bot Acta 106:455–468

    Google Scholar 

  • Leves FP, Tierney ML, Howitt SM (2008) Polar residues in a conserved motif spanning helices 1 and 2 are functionally important in the SulP transporter family. Int J Biochem Cell Biol 40:2596–2605

    Article  PubMed  CAS  Google Scholar 

  • Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  PubMed  CAS  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Nat Acad Sci USA 97:12356–12360

    Article  PubMed  CAS  Google Scholar 

  • Schromburg L, Schweizer U, Köhrle J (2004) Selenium and selenoproteins in mammals: extraordinary, essential, enigmatic. Cell Mol Life Sci 61:1988–1995

    Google Scholar 

  • Shelden MC, Loughlin P, Tierney ML, Howitt SM (2003) Interactions between charged amino acid residues within transmembrane helices in the sulfate transporter SHST1. Biochemistry 42:12941–12949

    Article  PubMed  CAS  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  PubMed  CAS  Google Scholar 

  • Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao F-J, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium and molybdenum in wheat. Plant Physiol 153:327–336

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92:9373–9377

    Article  PubMed  CAS  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1609

    Article  PubMed  CAS  Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform 2, Unit 2.3

    Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  PubMed  CAS  Google Scholar 

  • Yang HS, Kim E, Lee S, Park HJ, Cooper DS, Rajbhandari I, Choi I (2009) Mutation of aspartate 555 of the sodium/bicarbonate transporter SLC4A4/NBCe1 induces chloride transport. J Biol Chem 284:15970–15979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grand-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the U.K. E.C. was supported by the Lawes Agricultural Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm J. Hawkesford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Cabannes, E., Buchner, P., Hawkesford, M.J. (2012). Identification and Sequence Analysis of Sulfate/Selenate Transporters in Selenium Hyper- and Non-accumulating Astragalus Plant Species. In: De Kok, L., et al. Sulfur Metabolism in Plants. Proceedings of the International Plant Sulfur Workshop, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4450-9_20

Download citation

Publish with us

Policies and ethics