Skip to main content

Endoplasmic Reticulum-mitochondria connections, calcium cross-talk and cell fate: a closer inspection

  • Chapter
  • First Online:
Endoplasmic Reticulum Stress in Health and Disease

Abstract

In eukaryotic cells, calcium (Ca2+ ) stores form a complex web where the capability to take up and release the cation is spread among different but highly interconnected structures that are physically based on the most abundant intracellular membranes: i.e., those forming the endoplasmic reticulum (ER) and the mitochondrial networks. Main hubs of these infra-structures are the Mitochondria-Associated Membranes (MAMs), ER and mitochondria juxtaposed membrane domains whose precise composition and functionality are now emerging. Understanding how these intracellular networks control Ca2+ dynamics under physiological and pathological conditions is fundamental to life sciences. The relevance of this issue is documented by the extraordinarily large number of qualified contributions that can offer both extensive reviews and in-depth examinations of specific aspects. In this chapter we update the ER-mitochondria connection, with a special glance at the Ca2+ cross-talk, from different points of view: the molecules that are involved, either as essential building blocks or as modulators; the messages that travel between the two networks; the most novel technical approaches that allow us to answer old questions and open new perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s Disease

Aeq:

Aequorin

[Ca2 + ]:

Ca2 + concentration

CCE:

Capacitative Ca2 + Entry

CNX:

Calnexin

COX-VIII:

Cytochrome c Oxidase Subunit VIII

Drp1:

dynamin-related protein 1

ER:

Endoplasmic Reticulum

FAD:

Familial Alzheimer’s Disease

Fis-1:

Fission protein 1

FRET:

Fluorescence Resonance Energy Transfer

GA:

Golgi Apparatus

GEM:

Glycosphingolipid-Enriched Microdomain

GFP:

Green Fluorescent Protein

grp75:

glucose-regulated protein 75

HSP70:

Heat Shock Protein 70

IMM:

Inner Mitochondrial Membrane

IMS:

Inter Membrane Space

IP3R:

Inositol 1,4,5 tris-Phosphate Receptor

MAMs:

Mitochondria-Associated Membranes

MCU:

Mitochondrial Ca2+ Uniporter

Mff:

Mitochondrial fission factor

Mfn2:

Mitofusin2

NCLX:

Na + /Ca2 +/Li+ exchanger

OMM:

Outer Mitochondrial Membrane

PDI:

Protein Disulfide-Isomerase

PML:

promyelocytic leukemia protein

PS1/2:

Presenilin-1 and -2

PTP:

Permeability Transition Pore

ROS:

Reactive Oxygen Species

RyR:

Ryanodine Receptor

SERCA:

Sarco-Endoplasmic Reticulum Ca2 + ATPase

Sig-1R:

Sigma-1Receptor

S1T:

SERCA1 Truncated form

SPCA1:

Secretory Pathway Ca2+ ATPase1

STIM:

STromal Interaction Molecule

TCA:

Tricarboxylic Acid

TEM:

Transmission Electron Microscopy

UPR:

Unfolded Protein Response

VDAC:

Voltage Dependent Anion Channel

References

  1. Foskett JK (2010) Inositol trisphosphate receptor Ca2+ release channels in neurological diseases. Pflugers Arch 460(2):481–494

    Article  PubMed  CAS  Google Scholar 

  2. Mikoshiba K (2007) The IP3 receptor/Ca2+ channel and its cellular function. Biochem Soc Symp (74):9–22

    Google Scholar 

  3. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2(11)

    Google Scholar 

  4. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417(3):651–666

    Article  PubMed  CAS  Google Scholar 

  5. Royer L, Rios E (2009) Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol 58(Pt 13):3101–3111

    Article  CAS  Google Scholar 

  6. Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J (2011) The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 3(5)

    Google Scholar 

  7. Montero M, Alvarez J, Scheenen WJJ, Rizzuto R, Meldolesi J, Pozzan T (1997) Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+ ] subcompartments in intact HeLa cells. J Cell Biol 139:601–611

    Article  PubMed  CAS  Google Scholar 

  8. Mogami H, Nakano K, Tepikin AV, Petersen OH (1997) Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88(1):49–55

    Article  PubMed  CAS  Google Scholar 

  9. Park MK, Petersen OH, Tepikin AV (2000) The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration. EMBO J 19(21):5729–5739

    Article  PubMed  CAS  Google Scholar 

  10. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85(1):201–279

    Article  PubMed  CAS  Google Scholar 

  11. Meldolesi J, Pozzan T (1998) The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol 142(6):1395–1398

    Article  PubMed  CAS  Google Scholar 

  12. Ohta T, Wakade AR, Yonekubo K, Ito S (2002) Functional relation between caffeine- and muscarine-sensitive Ca2+ stores and no Ca2+ releasing action of cyclic adenosine diphosphate-ribose in guinea-pig adrenal chromaffin cells. Neurosci Lett 326(3):167–170

    Article  PubMed  CAS  Google Scholar 

  13. Aulestia FJ, Redondo PC, Rodriguez-Garcia A, Rosado JA, Salido GM, Alonso MT, Garcia-Sancho J (2011) Two distinct calcium pools in the endoplasmic reticulum of HEK-293 T cells. Biochem J 435(1):227–235

    Article  PubMed  CAS  Google Scholar 

  14. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300(5616):87–91

    Article  PubMed  CAS  Google Scholar 

  15. Jones VC, McKeown L, Verkhratsky A, Jones OT (2008) LV-pIN-KDEL: a novel lentiviral vector demonstrates the morphology, dynamics and continuity of the endoplasmic reticulum in live neurones. BMC Neurosci 9:10

    Article  PubMed  CAS  Google Scholar 

  16. Jones VC, Rodriguez JJ, Verkhratsky A, Jones OT (2009) A lentivirally delivered photoactivatable GFP to assess continuity in the endoplasmic reticulum of neurones and glia. Pflugers Arch 458(4):809–818

    Article  PubMed  CAS  Google Scholar 

  17. Solovyova N, Verkhratsky A (2003) Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+ ] recordings in single rat sensory neurones. Pflugers Arch 446(4):447–454

    Article  PubMed  CAS  Google Scholar 

  18. Petersen OH, Verkhratsky A (2007) Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells. Cell Calcium 42(4–5):373–378

    Article  PubMed  CAS  Google Scholar 

  19. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  20. Rudolf R, Magalhaes PJ, Pozzan T (2006) Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytosolic cAMP dynamics in mouse skeletal muscle. J Cell Biol 173(2):187–193

    Article  PubMed  CAS  Google Scholar 

  21. Pinton P, Ferrari D, Magalhães P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  PubMed  CAS  Google Scholar 

  22. Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, Garcia AG, Garcia-Sancho J, Montero M, Alvarez J (1999) Ca2+ -induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 144(2):241–254

    Google Scholar 

  23. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 3(6)

    Google Scholar 

  24. Ong DS, Mu TW, Palmer AE, Kelly JW (2010) Endoplasmic reticulum Ca2+ increases enhance mutant glucocerebrosidase proteostasis. Nat Chem Biol 6(6):424–432

    Article  PubMed  CAS  Google Scholar 

  25. Burdakov D, Petersen OH, Verkhratsky A (2005) Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 38(3–4):303–310

    Article  PubMed  CAS  Google Scholar 

  26. Camello C, Lomax R, Petersen OH, Tepikin AV (2002) Calcium leak from intracellular stores–the enigma of calcium signalling. Cell Calcium 32(5–6):355–361

    Article  PubMed  CAS  Google Scholar 

  27. Guerrero-Hernandez A, Dagnino-Acosta A, Verkhratsky A (2010) An intelligent sarco-endoplasmic reticulum Ca2+ store: release and leak channels have differential access to a concealed Ca2+ pool. Cell Calcium 48(2–3):143–149

    Article  PubMed  CAS  Google Scholar 

  28. Roy A, Wonderlin WF (2003) The permeability of the endoplasmic reticulum is dynamically coupled to protein synthesis. J Biol Chem 278(7):4397–4403

    Article  PubMed  CAS  Google Scholar 

  29. Flourakis M, Van Coppenolle F, Lehen’kyi V, Beck B, Skryma R, Prevarskaya N (2006) Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation. FASEB J 20(8):1215–1217

    Article  PubMed  CAS  Google Scholar 

  30. Ong HL, Liu X, Sharma A, Hegde RS, Ambudkar IS (2007) Intracellular Ca(2+ ) release via the ER translocon activates store-operated calcium entry. Pflugers Arch 453(6):797–808

    Article  PubMed  CAS  Google Scholar 

  31. Brunello L, Zampese E, Florean C, Pozzan T, Pizzo P, Fasolato C (2009) Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J Cell Mol Med 13:3358–3369

    Article  PubMed  Google Scholar 

  32. Anyatonwu GI, Ehrlich BE (2005) Organic cation permeation through the channel formed by polycystin-2. J Biol Chem 280(33):29488–29493

    Article  PubMed  CAS  Google Scholar 

  33. Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, De Strooper B, Yu G, Bezprozvanny I (2006) Presenilins form ER Ca+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126(5):981–993

    Article  PubMed  CAS  Google Scholar 

  34. Kim HR, Lee GH, Ha KC, Ahn T, Moon JY, Lee BJ, Cho SG, Kim S, Seo YR, Shin YJ, Chae SW, Reed JC, Chae HJ (2008) Bax Inhibitor-1 Is a pH-dependent regulator of Ca2+ channel activity in the endoplasmic reticulum. J Biol Chem 283(23):15946–15955

    Article  PubMed  CAS  Google Scholar 

  35. D’Hondt C, Ponsaerts R, De Smedt H, Vinken M, De Vuyst E, De Bock M, Wang N, Rogiers V, Leybaert L, Himpens B, Bultynck G (2011) Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 23(2):305–316

    Google Scholar 

  36. Cheung KH, Mei L, Mak DO, Hayashi I, Iwatsubo T, Kang DE, Foskett JK (2010) Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Sci Signal 3(114):ra22

    Google Scholar 

  37. Rybalchenko V, Hwang SY, Rybalchenko N, Koulen P (2008) The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity. Int J Biochem Cell Biol 40(1):84–97

    Article  PubMed  CAS  Google Scholar 

  38. Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P (2008) The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 44(5):507–518

    Article  PubMed  CAS  Google Scholar 

  39. Bergeron JJ, Brenner MB, Thomas DY, Williams DB (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci 19(3):124–128

    Article  PubMed  CAS  Google Scholar 

  40. Coe H, Michalak M (2009) Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys 28 Spec No Focus:F96–F103

    Google Scholar 

  41. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  PubMed  CAS  Google Scholar 

  42. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE, Jr., Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+ -store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Google Scholar 

  43. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104(22):9301–9306

    Article  PubMed  CAS  Google Scholar 

  44. Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11(6):669–677

    Article  PubMed  CAS  Google Scholar 

  45. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339

    Article  PubMed  CAS  Google Scholar 

  46. Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17(18):5298–5308

    Article  PubMed  CAS  Google Scholar 

  47. Lissandron V, Podini P, Pizzo P, Pozzan T (2010) Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci USA 107(20):9198–9203

    Article  PubMed  CAS  Google Scholar 

  48. Colombini M (1980) Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann NY Acad Sci 341:552–563

    Article  PubMed  CAS  Google Scholar 

  49. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797(6–7):607–618

    PubMed  CAS  Google Scholar 

  50. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31(3):227–285

    Article  PubMed  CAS  Google Scholar 

  51. Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P (2009) Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 41(10):1817–1827

    Article  PubMed  CAS  Google Scholar 

  52. Campello S, Scorrano L (2010) Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 11(9):678–684

    Article  PubMed  CAS  Google Scholar 

  53. Giacomello M, Drago I, Pizzo P, Pozzan T (2007) Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ 14(7):1267–1274

    Article  PubMed  CAS  Google Scholar 

  54. Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca2+ -dependent apoptosis and necrosis. Cell Calcium 50(3):222–233

    Article  PubMed  CAS  Google Scholar 

  55. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316

    Article  PubMed  CAS  Google Scholar 

  56. MacAskill AF, Kittler JT (2010) Control of mitochondrial transport and localization in neurons. Trends Cell Biol 20(2):102–112

    Article  PubMed  CAS  Google Scholar 

  57. Chang KT, Niescier RF, Min KT (2011) Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc Natl Acad Sci USA 108(37):15456–15461

    Article  PubMed  CAS  Google Scholar 

  58. Ishii K, Hirose K, Iino M (2006) Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Report 7(4):390–396

    Article  CAS  Google Scholar 

  59. Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16(3):343–353

    Article  PubMed  CAS  Google Scholar 

  60. Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD, Hansford RG (1991) Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am J Physiol Heart Circ Physiol 261:H1123–H1134

    CAS  Google Scholar 

  61. Filippin L, Magalhães PJ, Di Benedetto G, Colella M, Pozzan T (2003) Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 278:39224–39234

    Article  PubMed  CAS  Google Scholar 

  62. Pozzan T, Rizzuto R (2000) The renaissance of mitochondrial calcium transport. Eur J Biochem 267:5269–5273

    Article  PubMed  CAS  Google Scholar 

  63. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262(5134):744–747

    Article  PubMed  CAS  Google Scholar 

  64. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766

    Article  PubMed  CAS  Google Scholar 

  65. Rizzuto R, Pinton P, Brini M, Chiesa A, Filippin L, Pozzan T (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26(5):193–199

    Article  PubMed  CAS  Google Scholar 

  66. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+ : molecular determinants and functional consequences. Physiol Rev 86(1):369–408

    Article  PubMed  CAS  Google Scholar 

  67. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38(2):280–290

    Article  PubMed  CAS  Google Scholar 

  68. Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39(1):121–132

    Article  PubMed  CAS  Google Scholar 

  69. Drago I, Pizzo P, Pozzan T (2011) After half a century mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J 30(20):4119–4125

    Article  PubMed  CAS  Google Scholar 

  70. Hoppe UC (2010) Mitochondrial calcium channels. FEBS Lett 584(10):1975–1981

    Article  PubMed  CAS  Google Scholar 

  71. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467(7313):291–296

    Article  PubMed  CAS  Google Scholar 

  72. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345

    Article  PubMed  CAS  Google Scholar 

  73. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340

    Article  PubMed  CAS  Google Scholar 

  74. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364

    Article  PubMed  CAS  Google Scholar 

  75. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na + /Ca2+ exchange. Proc Natl Acad Sci USA 107(1):436–441

    Article  PubMed  CAS  Google Scholar 

  76. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921

    Article  PubMed  CAS  Google Scholar 

  77. Robertson JD (1960) The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol 10:343–418

    PubMed  CAS  Google Scholar 

  78. Ruby JR, Dyer RF, Skalko RG (1969) Continuities between mitochondria and endoplasmic reticulum in the mammalian ovary. Z Zellforsch Mikrosk Anat 97(1):30–37

    Article  PubMed  CAS  Google Scholar 

  79. Morré DJ, Merritt WD, Lembi CA (1971) Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73(1):43–49

    Article  PubMed  Google Scholar 

  80. Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265(13):7248–7256

    PubMed  CAS  Google Scholar 

  81. Csordás G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108

    Article  PubMed  Google Scholar 

  82. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    Article  PubMed  CAS  Google Scholar 

  83. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24(4):717–729

    Article  PubMed  CAS  Google Scholar 

  84. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30(3):556–568

    Article  PubMed  CAS  Google Scholar 

  85. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911

    Article  PubMed  CAS  Google Scholar 

  86. Area-Gomez E, de Groof AJ, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175(5):1810–1816

    Article  PubMed  CAS  Google Scholar 

  87. Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P (2011) Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc Natl Acad Sci USA 108(7):2777–2782

    Article  PubMed  CAS  Google Scholar 

  88. Zampese E, Fasolato C, Pozzan T, Pizzo P (2011) Presenilin-2 modulation of ER-mitochondria interactions. Communicat Integrat Biol 4(3):357–360

    Article  CAS  Google Scholar 

  89. Szabadkai G, Duchen MR (2008) Mitochondria: the hub of cellular Ca2+ signaling. Physiology (Bethesda) 23:84–94

    Article  CAS  Google Scholar 

  90. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787(11):1342–1351

    Article  PubMed  CAS  Google Scholar 

  91. de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J 29(16):2715–2723

    Article  PubMed  CAS  Google Scholar 

  92. Simmen T, Lynes EM, Gesson K, Thomas G (2010) Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). Biochim Biophys Acta 1798(8):1465–1473

    Article  PubMed  CAS  Google Scholar 

  93. Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB (2011) The IP3 receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 1813(5):1003–1013

    Article  PubMed  CAS  Google Scholar 

  94. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190

    Article  PubMed  CAS  Google Scholar 

  95. Hayashi T, Su TP (2010) Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 51:381–398

    Article  PubMed  CAS  Google Scholar 

  96. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325(5939):477–481

    Article  PubMed  CAS  Google Scholar 

  97. Kornmann B, Walter P (2010) ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 123(Pt 9):1389–1393

    Article  PubMed  CAS  Google Scholar 

  98. Daum G, Vance JE (1997) Import of lipids into mitochondria. Prog Lipid Res 36(2–3):103–130

    Article  PubMed  CAS  Google Scholar 

  99. Achleitner G, Gaigg B, Krasser A, Kainersdorfer E, Kohlwein SD, Perktold A, Zellnig G, Daum G (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 264(2):545–553

    Article  PubMed  CAS  Google Scholar 

  100. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19(2):81–88

    Article  PubMed  CAS  Google Scholar 

  101. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d’Azzo A (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+ -dependent mitochondrial apoptosis. Mol Cell 36(3):500–511

    Article  PubMed  CAS  Google Scholar 

  102. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305(5685):858–862

    Article  PubMed  CAS  Google Scholar 

  103. Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15):5409–5420

    Article  PubMed  CAS  Google Scholar 

  104. Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann NY Acad Sci 1201:34–39

    Article  PubMed  CAS  Google Scholar 

  105. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191(6):1141–1158

    Article  PubMed  CAS  Google Scholar 

  106. Friedman JR, Lackner LL, West M, Dibenedetto JR, Nunnari J, Voeltz GK (2011) ER Tubules Mark Sites of Mitochondrial Division. Science 334(6054):358–362

    Article  PubMed  CAS  Google Scholar 

  107. Rambold AS, Lippincott-Schwartz J (2011) Cell biology. SevERing mitochondria. Science 334(6053):186–187

    Article  PubMed  CAS  Google Scholar 

  108. Pizzo P, Pozzan T (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17(10):511–517

    Article  PubMed  CAS  Google Scholar 

  109. Csordas G, Hajnoczky G (2009) SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta 1787(11):1352–1362

    Article  PubMed  CAS  Google Scholar 

  110. McCormack JG, Denton RM (1990) The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues. Biochim Biophys Acta 1018(2–3):287–291

    PubMed  CAS  Google Scholar 

  111. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96(24):13807–13812

    Article  PubMed  CAS  Google Scholar 

  112. del Arco A, Satrustegui J (1998) Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273(36):23327–23334

    Article  PubMed  CAS  Google Scholar 

  113. Del Arco A, Agudo M, Satrustegui J (2000) Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues. Biochem J 345(Pt 3):725–732

    Article  PubMed  Google Scholar 

  114. Wiederkehr A, Szanda G, Akhmedov D, Mataki C, Heizmann CW, Schoonjans K, Pozzan T, Spat A, Wollheim CB (2011) Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 13(5):601–611

    Article  PubMed  CAS  Google Scholar 

  115. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142(2):270–283

    Article  PubMed  CAS  Google Scholar 

  116. Wang HJ, Guay G, Pogan L, Sauve R, Nabi IR (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150(6):1489–1498

    Article  PubMed  CAS  Google Scholar 

  117. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167(4):661–672

    Article  PubMed  CAS  Google Scholar 

  118. Yule DI, Betzenhauser MJ, Joseph SK (2010) Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium 47(6):469–479

    Article  PubMed  CAS  Google Scholar 

  119. Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J 18(22):6349–6361

    Article  PubMed  CAS  Google Scholar 

  120. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280(19):18558–18561

    Article  PubMed  CAS  Google Scholar 

  121. Giorgi C, Romagnoli A, Pinton P, Rizzuto R (2008) Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8(2):119–130

    Article  PubMed  CAS  Google Scholar 

  122. Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV (2009) Calcium elevation in mitochondria is the main Ca2 + requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284(31):20796–20803

    Article  PubMed  CAS  Google Scholar 

  123. De Stefani D, Bononi A, Romagnoli A, Messina A, De Pinto V, Pinton P, Rizzuto R (2011) VDAC1 selectively transfers apoptotic Ca2 + signals to mitochondria. Cell Death Differ. doi:10.1038/cdd.2011.92

    Google Scholar 

  124. Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 139(2):327–338

    Google Scholar 

  125. Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, Quiroga C, Rodriguez AE, Verdejo HE, Ferreira J, Iglewski M, Chiong M, Simmen T, Zorzano A, Hill JA, Rothermel BA, Szabadkai G, Lavandero S (2011) Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124(Pt 13):2143–2152

    Google Scholar 

  126. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+ ) signaling and cell survival. Cell 131(3):596–610

    Article  PubMed  CAS  Google Scholar 

  127. Chami M, Gozuacik D, Lagorce D, Brini M, Falson P, Peaucellier G, Pinton P, Lecoeur H, Gougeon ML, le Maire M, Rizzuto R, Brechot C, Paterlini-Brechot P (2001) SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 153(6):1301–1314

    Article  PubMed  CAS  Google Scholar 

  128. Chami M, Oules B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Brechot P (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32(5):641–651

    Article  PubMed  CAS  Google Scholar 

  129. Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca(2+ ) oscillations via an interaction with SERCA2b. J Cell Biol 149(6):1235–1248

    Article  PubMed  CAS  Google Scholar 

  130. Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G, Simmen T (2008) The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell 19(7):2777–2788

    Article  PubMed  CAS  Google Scholar 

  131. Copeland DE, Dalton AJ (1959) An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol 5(3):393–396

    Article  PubMed  CAS  Google Scholar 

  132. Franke WW, Kartenbeck J (1971) Outer mitochondrial membrane continuous with endoplasmic reticulum. Protoplasma 73(1):35–41

    Article  PubMed  CAS  Google Scholar 

  133. Lewis JA, Tata JR (1973) A rapidly sedimenting fraction of rat liver endoplasmic reticulum. J Cell Sci 13(2):447–459

    PubMed  CAS  Google Scholar 

  134. Spacek J, Lieberman AR (1980) Relationships between mitochondrial outer membranes and agranular reticulum in nervous tissue: ultrastructural observations and a new interpretation. J Cell Sci 46:129–147

    PubMed  CAS  Google Scholar 

  135. Ardail D, Gasnier F, Lerme F, Simonot C, Louisot P, Gateau-Roesch O (1993) Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. J Biol Chem 268(34):25985–25992

    PubMed  CAS  Google Scholar 

  136. Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119(3):260–272

    Article  PubMed  CAS  Google Scholar 

  137. Mannella CA, Buttle K, Rath BK, Marko M (1998) Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8(3–4):225–228

    Article  PubMed  CAS  Google Scholar 

  138. Perktold A, Zechmann B, Daum G, Zellnig G (2007) Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell. FEMS Yeast Res 7(4):629–638

    Article  PubMed  CAS  Google Scholar 

  139. Hajnoczky G, Csordas G, Madesh M, Pacher P (2000) The machinery of local Ca2 + signalling between sarco-endoplasmic reticulum and mitochondria. J Physiol 529(Pt 1):69–81

    Article  PubMed  CAS  Google Scholar 

  140. Shore GC, Tata JR (1977) Two fractions of rough endoplasmic reticulum from rat liver. I. Recovery of rapidly sedimenting endoplasmic reticulum in association with mitochondria. J Cell Biol 72(3):714–725

    Article  PubMed  CAS  Google Scholar 

  141. Shore GC, Tata JR (1977) Two fractions of rough endoplasmic reticulum from rat liver. II. Cytoplasmic messenger RNA’s which code for albumin and mitochondrial proteins are distributed differently between the two fractions. J Cell Biol 72(3):726–743

    Article  PubMed  CAS  Google Scholar 

  142. Meier PJ, Spycher MA, Meyer UA (1981) Isolation and characterization of rough endoplasmic reticulum associated with mitochondria from normal rat liver. Biochim Biophys Acta 646(2):283–297

    Article  PubMed  CAS  Google Scholar 

  143. Cascarano J, Montisano DF, Pickett CB, James TW (1982) Rough endoplasmic reticulum-mitochondrial complexes from rat liver. An extramitochondrial succinic dehydrogenase associated with this rough endoplasmic reticulum. Exp Cell Res 139(1):39–50

    Article  PubMed  CAS  Google Scholar 

  144. Katz J, Wals PA, Golden S, Raijman L (1983) Mitochondrial-reticular cytostructure in liver cells. Biochem J 214(3):795–813

    PubMed  CAS  Google Scholar 

  145. Dennis EA, Kennedy EP (1972) Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J Lipid Res 13(2):263–267

    PubMed  CAS  Google Scholar 

  146. Rusinol AE, Cui Z, Chen MH, Vance JE (1994) A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269(44):27494–27502

    PubMed  CAS  Google Scholar 

  147. Shiao YJ, Lupo G, Vance JE (1995) Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem 270(19):11190–11198

    Article  PubMed  CAS  Google Scholar 

  148. Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275(44):34534–34540

    Article  PubMed  CAS  Google Scholar 

  149. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4(11):1582–1590

    Article  PubMed  CAS  Google Scholar 

  150. Cerqua C, Anesti V, Pyakurel A, Liu D, Naon D, Wiche G, Baffa R, Dimmer KS, Scorrano L (2010) Trichoplein/mitostatin regulates endoplasmic reticulum-mitochondria juxtaposition. EMBO Rep 11(11):854–860

    Article  PubMed  CAS  Google Scholar 

  151. Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103(Pt 3):857–862

    PubMed  CAS  Google Scholar 

  152. Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of object in dual-colour confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  153. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190(3):363–375

    Article  PubMed  CAS  Google Scholar 

  154. Bui M, Gilady SY, Fitzsimmons RE, Benson MD, Lynes EM, Gesson K, Alto NM, Strack S, Scott JD, Simmen T (2010) Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. J Biol Chem 285(41):31590–31602

    Article  PubMed  CAS  Google Scholar 

  155. Csordás G, Hajnoczky G (2001) Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium 29(4):249–262

    Article  PubMed  Google Scholar 

  156. Simpson PB, Mehotra S, Lange GD, Russell JT (1997) High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem 272:22654–22661

    Article  PubMed  CAS  Google Scholar 

  157. Lewin TM, Van Horn CG, Krisans SK, Coleman RA (2002) Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane. Arch Biochem Biophys 404(2):263–270

    Article  PubMed  CAS  Google Scholar 

  158. Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1):80–84

    Article  PubMed  CAS  Google Scholar 

  159. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358(6384):325–327

    Article  PubMed  CAS  Google Scholar 

  160. Pinton P, Leo S, Wieckowski MR, Di Benedetto G, Rizzuto R (2004) Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. J Cell Biol 165(2):223–232

    Article  PubMed  CAS  Google Scholar 

  161. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82(3):415–424

    Article  PubMed  CAS  Google Scholar 

  162. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330(6008):1247–1251

    Article  PubMed  CAS  Google Scholar 

  163. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+ . Proc Natl Acad Sci USA 98(6):3197–3202

    Article  CAS  Google Scholar 

  164. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13(5):521–530

    Article  PubMed  CAS  Google Scholar 

  165. Tan W, Colombini M (2007) VDAC closure increases calcium ion flux. Biochim Biophys Acta 1768(10):2510–2515

    Article  PubMed  CAS  Google Scholar 

  166. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555

    Article  PubMed  CAS  Google Scholar 

  167. Subedi KP, Kim JC, Kang M, Son MJ, Kim YS, Woo SH (2011) Voltage-dependent anion channel 2 modulates resting Ca2+ sparks, but not action potential-induced Ca2+ signaling in cardiac myocytes. Cell Calcium 49(2):136–143

    Article  PubMed  CAS  Google Scholar 

  168. Abramov AY, Duchen MR (2011) Measurements of threshold of mitochondrial permeability transition pore opening in intact and permeabilized cells by flash photolysis of caged calcium. Methods Mol Biol 793:299–309

    Article  PubMed  CAS  Google Scholar 

  169. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89(3):799–845

    Article  PubMed  CAS  Google Scholar 

  170. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518

    Article  PubMed  CAS  Google Scholar 

  171. Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, Daugaard JR, Lloberas J, Camps M, Zierath JR, Rabasa-Lhoret R, Wallberg-Henriksson H, Laville M, Palacin M, Vidal H, Rivera F, Brand M, Zorzano A (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278(19):17190–17197

    Article  PubMed  CAS  Google Scholar 

  172. Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D, Li P, Qiu X, Wen S, Xiao RP, Tang J (2004) Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol 6(9):872–883

    Article  PubMed  CAS  Google Scholar 

  173. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105(49):19318–19323

    Article  PubMed  CAS  Google Scholar 

  174. Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci 14:1197–1218

    Article  PubMed  CAS  Google Scholar 

  175. Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114:867–874

    PubMed  CAS  Google Scholar 

  176. Nishizawa M, Izawa I, Inoko A, Hayashi Y, Nagata K, Yokoyama T, Usukura J, Inagaki M (2005) Identification of trichoplein, a novel keratin filament-binding protein. J Cell Sci 118(Pt 5):1081–1090

    Article  PubMed  CAS  Google Scholar 

  177. Vecchione A, Fassan M, Anesti V, Morrione A, Goldoni S, Baldassarre G, Byrne D, D’Arca D, Palazzo JP, Lloyd J, Scorrano L, Gomella LG, Iozzo RV, Baffa R (2009) MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer. Oncogene 28(2):257–269

    Article  PubMed  CAS  Google Scholar 

  178. Mendes CC, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, Rodrigues MA, Gomez MV, Nathanson MH, Leite MF (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280(49):40892–40900

    Article  PubMed  CAS  Google Scholar 

  179. Tsai SY, Rothman RK, Su TP (2011) Insights into the Sigma-1 receptor Chaperone’s cellular functions: a microarray report. Synapse. doi:10.1002/syn.20984

    Google Scholar 

  180. James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278(38):36373–36379

    Article  PubMed  CAS  Google Scholar 

  181. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160(7):1115–1127

    Article  PubMed  CAS  Google Scholar 

  182. Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B (2000) Total inactivation of ă-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2(7):461–462

    Google Scholar 

  183. Green KN, Demuro A, Akbari Y, Hitt BD, Smith IF, Parker I, LaFerla FM (2008) SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 181(7):1107–1116

    Google Scholar 

  184. Cheung KH, Shineman D, Muller M, Cardenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VM, Foskett JK (2008) Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58(6):871–883

    Google Scholar 

  185. Parks AL, Curtis D (2007) Presenilin diversifies its portfolio. Trends Genet 23(3):140–150

    Article  PubMed  CAS  Google Scholar 

  186. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7):1146–1158

    Google Scholar 

  187. Alto NM, Soderling J, Scott JD (2002) Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 158(4):659–668

    Google Scholar 

  188. Salomoni P, Ferguson BJ, Wyllie AH, Rich T (2008) New insights into the role of PML in tumour suppression. Cell Res 18(6):622–640

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Pizzo or Cristina Fasolato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Filadi, R., Zampese, E., Pozzan, T., Pizzo, P., Fasolato, C. (2012). Endoplasmic Reticulum-mitochondria connections, calcium cross-talk and cell fate: a closer inspection. In: Agostinis, P., Afshin, S. (eds) Endoplasmic Reticulum Stress in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4351-9_4

Download citation

Publish with us

Policies and ethics