Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

Lipids are essential components of both eukaryotic and prokaryotic cells, serving diverse functions including energy metabolism and membrane structure. Intracellular vacuolar pathogens such as Coxiella burnetii require lipids for both normal bacterial functions as well as formation of the acidic, phagolysosomal-like parasitophorous vacuole (PV) surrounding the bacteria. As an intracellular pathogen, C. burnetii can acquire lipid through both de novo bacterial synthesis and subversion of host cell pools. The C. burnetii genome encodes enzymes required for de novo synthesis of fatty acids and phospholipids. The high percentage of branched fatty acids suggests C. burnetii modifies these molecules to generate a bacterial cell envelope that can resist the harsh environment of the PV, such as the acidic pH. In addition to fatty acids and their derivatives, C. burnetii requires isoprenoids, particularly sterols as the PV membrane is cholesterol-rich. With the exception of two eukaryote-like sterol reductases, C. burnetii does not have the capability to generate cholesterol, suggesting sterols are actively diverted from the host cell. While C. burnetii utilizes host cell lipids for membrane biogenesis and possibly energy, bacterial manipulation of host cell lipid signaling pathways may support establishment of the intracellular niche. For example, effectors secreted by the C. burnetii Type IV secretion system may either directly or indirectly modify host cell lipids. Further understanding of the lipid biosynthetic capabilities of C. burnetii, along with C. burnetii’s manipulation of host cell lipids, will provide insight into the host-pathogen relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amano K, Williams JC (1984) Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. J Bacteriol 160:994–1002

    PubMed  CAS  Google Scholar 

  • Amano K, Williams JC, Mccaul TF, Peacock MG (1984) Biochemical and immunological properties of Coxiella burnetii cell wall and peptidoglycan-protein complex fractions. J Bacteriol 160:982–988

    PubMed  CAS  Google Scholar 

  • Baca OG, Paretsky D (1983) Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiol Rev 47:127–149

    PubMed  CAS  Google Scholar 

  • Banerji S, Aurass P, Flieger A (2008) The manifold phospholipases A of Legionella pneumophila – identification, export, regulation, and their link to bacterial virulence. Int J Med Microbiol 298:169–181

    Article  PubMed  CAS  Google Scholar 

  • Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ 3rd, Porcella SF, Samuel JE, Heinzen RA (2009) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656

    Article  PubMed  CAS  Google Scholar 

  • Bergler H, Fuchsbichler S, Hogenauer G, Turnowsky F (1996) The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Eur J Biochem 242:689–694

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov M, Heacock P, Guan Z, Dowhan W (2010) Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Proc Natl Acad Sci U S A 107:15057–15062

    Article  PubMed  CAS  Google Scholar 

  • Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M, Hilbi H (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284:4846–4856

    Article  PubMed  CAS  Google Scholar 

  • Card GL, Trautman JK (1990) Role of anionic lipid in bacterial membranes. Biochim Biophys Acta 1047:77–82

    Article  PubMed  CAS  Google Scholar 

  • Catron DM, Lange Y, Borensztajn J, Sylvester MD, Jones BD, Haldar K (2004) Salmonella enterica serovar Typhimurium requires nonsterol precursors of the cholesterol biosynthetic pathway for intracellular proliferation. Infect Immun 72:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Chalmers JD, Singanayagam A, Murray MP, Hill AT (2008) Prior statin use is associated with improved outcomes in community-acquired pneumonia. Am J Med 121(1002–1007):e1

    PubMed  Google Scholar 

  • Chan ML, Mcchesney J, Paretsky D (1976) Further characterization of a lipopolysaccharide from Coxiella burneti. Infect Immun 13:1721–1727

    PubMed  CAS  Google Scholar 

  • Chow OA, Von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, Nizet V (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8:445–454

    Article  PubMed  CAS  Google Scholar 

  • Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340

    PubMed  CAS  Google Scholar 

  • Corvera E, Mouritsen OG, Singer MA, Zuckermann MJ (1992) The permeability and the effect of acyl-chain length for phospholipid bilayers containing cholesterol: theory and experiment. Biochim Biophys Acta 1107:261–270

    Article  PubMed  CAS  Google Scholar 

  • Cossart P, Roy CR (2010) Manipulation of host membrane machinery by bacterial pathogens. Curr Opin Cell Biol 22:547–554

    Article  PubMed  CAS  Google Scholar 

  • Domingues P, Palkovic P, Toman R (2002) Analysis of phospholipids from Coxiella burnetii by fast atom bombardment mass spectrometry. A rapid method for differentiation of virulent phase I and low virulent phase II cells. Acta Virol 46:121–124

    PubMed  CAS  Google Scholar 

  • Gilk SD, Beare PA, Heinzen RA (2010) Coxiella burnetii expresses a functional {Delta}24 sterol reductase. J Bacteriol 192:6154–6159

    Article  PubMed  CAS  Google Scholar 

  • Giotis ES, Mcdowell DA, Blair IS, Wilkinson BJ (2007) Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Appl Environ Microbiol 73:997–1001

    Article  PubMed  CAS  Google Scholar 

  • Heath RJ, Su N, Murphy CK, Rock CO (2000) The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J Biol Chem 275:40128–40133

    Article  PubMed  CAS  Google Scholar 

  • Heinzen RA, Hackstadt T (1997) The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds. Infect Immun 65:1088–1094

    PubMed  CAS  Google Scholar 

  • Howe D, Heinzen RA (2006) Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 8:496–507

    Article  PubMed  CAS  Google Scholar 

  • Jackson M, Stadthagen G, Gicquel B (2007) Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis (Edinb) 87:78–86

    Article  CAS  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    PubMed  CAS  Google Scholar 

  • La Scola B, Raoult D (2001) Survival of Coxiella burnetii within free-living amoeba Acanthamoeba castellanii. Clin Microbiol Infect 7:75–79

    Article  PubMed  Google Scholar 

  • Lange Y, Swaisgood MH, Ramos BV, Steck TL (1989) Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem 264:3786–3793

    PubMed  CAS  Google Scholar 

  • Lange Y, Ye J, Chin J (1997) The fate of cholesterol exiting lysosomes. J Biol Chem 272:17018–17022

    Article  PubMed  CAS  Google Scholar 

  • Liappis AP, Kan VL, Rochester CG, Simon GL (2001) The effect of statins on mortality in patients with bacteremia. Clin Infect Dis 33:1352–1357

    Article  PubMed  CAS  Google Scholar 

  • Liscum L, Faust JR (1989) The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one. J Biol Chem 264:11796–11806

    PubMed  CAS  Google Scholar 

  • Lu X, Kambe F, Cao X, Yoshida T, Ohmori S, Murakami K, Kaji T, Ishii T, Zadworny D, Seo H (2006) DHCR24-knockout embryonic fibroblasts are susceptible to serum withdrawal-induced apoptosis because of dysfunction of caveolae and insulin-Akt-Bad signaling. Endocrinology 147:3123–3132

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Kambe F, Cao X, Kozaki Y, Kaji T, Ishii T, Seo H (2008) 3beta-Hydroxysteroid-delta24 reductase is a hydrogen peroxide scavenger, protecting cells from oxidative stress-induced apoptosis. Endocrinology 149:3267–3273

    Article  PubMed  CAS  Google Scholar 

  • Luhrmann A, Nogueira CV, Carey KL, Roy CR (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 107:18997–19001

    Article  PubMed  CAS  Google Scholar 

  • Massengo-Tiasse RP, Cronan JE (2008) Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J Biol Chem 283:1308–1316

    Article  PubMed  CAS  Google Scholar 

  • Massengo-Tiasse RP, Cronan JE (2009) Diversity in enoyl-acyl carrier protein reductases. Cell Mol Life Sci 66:1507–1517

    Article  PubMed  CAS  Google Scholar 

  • Mccaul TF, Williams JC (1981) Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol 147:1063–1076

    PubMed  CAS  Google Scholar 

  • Miyazaki C, Kuroda M, Ohta A, Shibuya I (1985) Genetic manipulation of membrane phospholipid composition in Escherichia coli: pgsA mutants defective in phosphatidylglycerol synthesis. Proc Natl Acad Sci U S A 82:7530–7534

    Article  PubMed  CAS  Google Scholar 

  • Moliner C, Raoult D, Fournier PE (2009) Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes. BMC Res Notes 2:51

    Article  PubMed  Google Scholar 

  • Needham D, Mcintosh TJ, Evans E (1988) Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry 27:4668–4673

    Article  PubMed  CAS  Google Scholar 

  • Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella SF, Heinzen RA (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci U S A 106:4430–4434

    Article  PubMed  CAS  Google Scholar 

  • Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–2433

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Acebes S, De La Cueva P, Ferruelo AJ, Fernandez-Hernando C, Lasuncion MA, Martinez-Botas J, Gomez-Coronado D (2008) Dose-dependent dual effects of cholesterol and desmosterol on J774 macrophage proliferation. Biochem Biophys Res Commun 377:484–488

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Acebes S, De La Cueva P, Fernandez-Hernando C, Ferruelo AJ, Lasuncion MA, Rawson RB, Martinez-Botas J, Gomez-Coronado D (2009) Desmosterol can replace cholesterol in sustaining cell proliferation and regulating the SREBP pathway in a sterol-Delta24-reductase-deficient cell line. Biochem J 420:305–315

    Article  PubMed  CAS  Google Scholar 

  • Rog T, Vattulainen I, Jansen M, Ikonen E, Karttunen M (2008) Comparison of cholesterol and its direct precursors along the biosynthetic pathway: effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers. J Chem Phys 129:154508

    Article  PubMed  Google Scholar 

  • Rosch JW, Boyd AR, Hinojosa E, Pestina T, Hu Y, Persons DA, Orihuela CJ, Tuomanen EI (2010) Statins protect against fulminant pneumococcal infection and cytolysin toxicity in a mouse model of sickle cell disease. J Clin Invest 120:627–635

    Article  PubMed  CAS  Google Scholar 

  • Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL, Tettelin H, Davidsen TM, Beanan MJ, Deboy RT, Daugherty SC, Brinkac LM, Madupu R, Dodson RJ, Khouri HM, Lee KH, Carty HA, Scanlan D, Heinzen RA, Thompson HA, Samuel JE, Fraser CM, Heidelberg JF (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100:5455–5460

    Article  PubMed  CAS  Google Scholar 

  • Sexton RC, Panini SR, Azran F, Rudney H (1983) Effects of 3 beta-[2-(diethylamino)ethoxy]androst-5-en-17-one on the synthesis of cholesterol and ubiquinone in rat intestinal epithelial cell cultures. Biochemistry 22:5687–5692

    Article  PubMed  CAS  Google Scholar 

  • Shibuya I, Miyazaki C, Ohta A (1985) Alteration of phospholipid composition by combined defects in phosphatidylserine and cardiolipin synthases and physiological consequences in Escherichia coli. J Bacteriol 161:1086–1092

    PubMed  CAS  Google Scholar 

  • Singh P, Saxena R, Paila YD, Jafurulla M, Chattopadhyay A (2009) Differential effects of cholesterol and desmosterol on the ligand binding function of the hippocampal serotonin(1A) receptor: implications in desmosterolosis. Biochim Biophys Acta 1788:2169–2173

    Article  PubMed  CAS  Google Scholar 

  • Thomsen RW, Riis A, Kornum JB, Christensen S, Johnsen SP, Sorensen HT (2008) Preadmission use of statins and outcomes after hospitalization with pneumonia: population-based cohort study of 29,900 patients. Arch Intern Med 168:2081–2087

    Article  PubMed  Google Scholar 

  • Tsui MM, York JD (2010) Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. Adv Enzyme Regul 50:324–337

    Article  PubMed  Google Scholar 

  • Tzianabos T, Moss CW, Mcdade JE (1981) Fatty acid composition of rickettsiae. J Clin Microbiol 13:603–605

    PubMed  CAS  Google Scholar 

  • Vainio S, Jansen M, Koivusalo M, Rog T, Karttunen M, Vattulainen I, Ikonen E (2006) Significance of sterol structural specificity. Desmosterol cannot replace cholesterol in lipid rafts. J Biol Chem 281:348–355

    Article  PubMed  CAS  Google Scholar 

  • Voth DE, Heinzen RA (2009) Coxiella type IV secretion and cellular microbiology. Curr Opin Microbiol 12:74–80

    Article  PubMed  CAS  Google Scholar 

  • Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46

    Article  PubMed  Google Scholar 

  • Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352

    Article  PubMed  CAS  Google Scholar 

  • Wechsler A, Brafman A, Shafir M, Heverin M, Gottlieb H, Damari G, Gozlan-Kelner S, Spivak I, Moshkin O, Fridman E, Becker Y, Skaliter R, Einat P, Faerman A, Bjorkhem I, Feinstein E (2003) Generation of viable cholesterol-free mice. Science 302:2087

    Article  PubMed  CAS  Google Scholar 

  • Wollenweber HW, Schramek S, Moll H, Rietschel ET (1985) Nature and linkage type of fatty acids present in lipopolysaccharides of phase I and II Coxiella burnetii. Arch Microbiol 142:6–11

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Miloslavskaya I, Demontis S, Maestro R, Galaktionov K (2004) Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 432:640–645

    Article  PubMed  CAS  Google Scholar 

  • Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  PubMed  CAS  Google Scholar 

  • Xiong Q, Lin M, Rikihisa Y (2009) Cholesterol-dependent Anaplasma phagocytophilum exploits the low-density lipoprotein uptake pathway. PLoS Pathog 5:e1000329

    Article  PubMed  Google Scholar 

  • Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Article  PubMed  Google Scholar 

  • Zhang W, Campbell HA, King SC, Dowhan W (2005) Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli. J Biol Chem 280:26032–26038

    Article  PubMed  CAS  Google Scholar 

  • Zweytick D, Hrastnik C, Kohlwein SD, Daum G (2000) Biochemical characterization and subcellular localization of the sterol C-24(28) reductase, Erg4p, from the yeast Saccharomyces cerevisiae. FEBS Lett 470:83–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Audrey Chong, Bob Heinzen, and Seth Winfree for critical reading of the manuscript. DHCR24+/− mice were generously provided by Quark Biotech (Israel). This research was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey D. Gilk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilk, S.D. (2012). Role of Lipids in Coxiella burnetii Infection. In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_10

Download citation

Publish with us

Policies and ethics