Skip to main content

Further Weakly-Nonlinear Approaches to Laminar-Flow Stability: Blasius Boundary-Layer Flow as a Paradigm

  • Chapter
  • First Online:
Hydrodynamic Instability and Transition to Turbulence

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 100))

  • 3802 Accesses

Abstract

Landau’s equation and its generalizations considered in Sect. 4.2 represent a particular weakly-nonlinear approach to the study of flow stability, based on the assumption that the disturbance amplitude A is small enough to justify the expansion of solutions of fluid-dynamic equations in powers of A. However this approach has a severe limitation: only the evolution of one isolated mode of disturbance is traced, while its interaction with all other modes is only roughly characterized by the values of real or complex Landau’s constants of various orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is often convenient to define the fluctuation amplitude as the root-mean-square value (i.e., as the square root of the temporal mean value of squared fluctuations). This definition is widely used, in particular, in studies of turbulent flows.

  2. 2.

    Below, in cases where complex amplitude is not considered, the real amplitude |A| will usually be denoted simple as A.

  3. 3.

    Some other attempts at numerical simulation of the N-regime of boundary layer instability developments were carried out by Spalart and Yang (1987) and Laurien and Kleiser (1989) (one result of the former authors is shown in Fig. 5.15c). However, in both these papers the less-accurate temporal, and not spatial, simulation was performed (see the small-type text below for discussion of the difference between these two approaches and the remarks about this topic in the next footnote 4) and the results found were less complete than those of Fasel et al. Therefore, except for Fig. 5.15b, these results will not be considered here. On the other hand, Rist and Fasel (1995) improved somewhat on the numerical method of Fasel et al.; however, as to the results relating to N-regime, the paper of 1995 contains only the indication that here “the quantitative agreement between numerical results and experiments was at least as good or even better than that achieved by Fasel et al. (1987)”.

  4. 4.

    The simplest way of doing this is based on the supplementation of the N-S equations by an artificial ‘force term’ guaranteeing the existence of a solution describing the plane-parallel Blasius boundary layer with time-dependent thickness δ(t), growing at a rate equal to that registered by an observer who moves streamwise with a reasonably chosen velocity. According to Gaster’s (1962) arguments, the group velocity c g of a packet of T-S waves (which depends only weakly on the vertical coordinate z) may be chosen as such a ‘reasonable velocity’. Then the corresponding time-dependent plane-parallel boundary layer may be considered as a temporal model of the real streamwise-growing boundary layer (cf. a remark in Chap. 4, about a similar method of numerical simulation of the steady plane-parallel model of a Blasius boundary layer). This method of approximate allowance, in temporal numerical simulations, for the spatial (streamwise) growth of a boundary layer was used, in particular, by Spalart and Yang (1987) and later gained great popularity.

  5. 5.

    However, the Squire waves also possibly made some contribution to the secondary disturbances computed by Herbert and his co-authors (such a possibility was explicitly mentioned by Crouch and Herbert (1993) in their study of nonlinear development of secondary disturbances in boundary layers). It is also possible that some small Squire-wave contribution was present even in some of the computational results of Zel’man and Maslennikova; as was pointed out by E. Reshotko (personal communication) Squire waves sometimes appear quite unexpectedly in numerical solutions of the Navier-Stokes equations.

  6. 6.

    Editors addendum: before he died, Prof. Akiva Yaglom was working on Chapter 6.

  7. 7.

    In Sect. 5.4, attempts by Wray and Hussaini (1984); Zang and Hussaini (1985, 1987, 1990). Murdock (1986); Laurien and Kleiser (1989); Kleiser and Zang (1991); Zang (1992) and some others to simulate numerically the boundary-layer instability development were mentioned. These papers contain a number of results relating to the K-regime of such development and almost all of them agree satisfactorily with available experimental data. However, these results are less accurate and less complete than those by Rist and Fasel (1995) and Rist and Kachanov (1995); therefore results of the earlier numerical simulations of the K-regime will not be considered in this book.

  8. 8.

    Therefore instead of the name ‘Benjamin-Ono (or B-O) equation’ the name ‘Benjamin-Davis-Acrivos (or BDA) equation’ or ‘Davis-Acrivos-Benjamin-Ono (or DABO) equation’ is sometimes used.

  9. 9.

    Note that the results of Butler and Farrell (1992) presented in Chap. 3 were obtained for a simplified, strictly plane-parallel model of the Blasius boundary layer. The optimally-growing disturbance structures for the more accurate model of a streamwise-thickening boundary layer were studied by Andersson et al. (1999) and Luchini (2000) but will not be considered here.

  10. 10.

    In both papers it was assumed that the boundary layer is plane-parallel but in the treatment of data relating to a given value of x, values of δ* and Re* corresponding to this x were used. (A more precise analysis of some data of Cohen et al., which took into account the streamwise growth of the boundary layer, was developed by Cohen (1994).) Measurements by Cohen et al. and Breuer et al. showed that in their studies the pressure gradient in the boundary layer was slightly negative, and therefore the function U(z) was slightly closer to a Falkner-Skan profile for β≈ 0.01 (see Chap. 2, p. 119) than to the Blasius profile corresponding to β = 0. However, the Blasius approximation was found to be accurate enough to be usable in the analysis of the experimental data.

  11. 11.

    The measurements by Breuer et al. discussed here related to waves excited by an acoustic pulse with a different amplitude from that used in the experiments by Cohen et al. (1991). Therefore the streamwise locations of the three stages of wave-packet development mentioned in our discussion of the results of Cohen et al. are not the same as those in the series of experiments considered here.

  12. 12.

    Note that the growth of the disturbance kinetic energy does not necessary imply the growth of disturbance velocities. For example, in the case of transient growth of localized disturbances in plane shear flows studied by Landahl (1980), the growth of disturbance energy due to the “lift-up effect” described by him is due to elongation of the disturbance increasing its volume, and not to the growth of velocities of individual fluid particles.

References

  • Abramyan, L. A., Stepanyants, Yu. A., & Shrira, V. I. (1992). Multidimensional solitons in shear flows of the boundary layer. Doklady Akademii Nauk, 327, 460–466. (transl: Soviet Physics Doklady, 37, 575–578).

    MathSciNet  Google Scholar 

  • Acarlar, M. C., & Smith, C. R. (1987). A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. Part 2. Hairpin vortices generated by fluid injection. Journal of Fluid Mechanics, 175, 1–41, 43–83.

    Google Scholar 

  • Akhmanov, S. A., & Khokhlov, R. V. (1972). Problems of nonlinear optics. New York: Gordon and Breach.

    Google Scholar 

  • Alfredsson, P. H., & Matsubara, M. (1996). Streaky structures in transition. In R. A. W. M. Henkes & J. L. van Ingen (Eds.), Transitional boundary layers in aeronautics (pp. 373–386). Amsterdam: North-Holland.

    Google Scholar 

  • Anders, J. B., & Blackwelder, R. F. (1980). Longitudinal vortices in a transitioning boundary layer. In R. Eppler & H. Fasel, (Eds.), Laminar-turbulent transition (pp. 110–119). Berlin: Springer.

    Google Scholar 

  • Andersson, P., Berggren, M., & Henningson, D. S. (1999). Optimal disturbances and bypass transition in boundary layers. Physics of Fluids, 11, 134–150.

    MathSciNet  MATH  Google Scholar 

  • Antar, B. N., & Collins, F. G. (1975). Numerical calculations of finite amplitude effects in unstable laminar boundary layers. Physics of Fluids, 18, 289–297.

    MATH  Google Scholar 

  • Armstrong, J. A., Bloembergen, N., Ducuing, J., & Pershan, P. S. (1962). Interaction between light waves in a nonlinear dielectric. Physical Review, 127, 1918–1939.

    Google Scholar 

  • Asai, M., & Nishioka, M. (1989). Origin of the peak-valley wave structure leading to wall turbulence. Journal of Fluid Mechanics, 208, 1–23.

    MATH  Google Scholar 

  • Bake, S., Kachanov, Yu. S., & Fernholz, H. H. (1996). Subharmonic K-regime of boundary-layer breakdown. In: R. A. W. M. Henkes & J. L. van Ingen (Eds.), Transitional boundary layers in aeronautics (pp. 81–88). Amsterdam: North-Holland.

    Google Scholar 

  • Bake, S., Fernholz, H. H., & Kachanov, Yu. S. (2000). Resemblance of K- and N-regimes of boundary-layer transition at late stages. European Journal of Mechanics B/Fluids, 19, 1–22.

    MATH  Google Scholar 

  • Banerjee, P. P., & Korpel, A. (1982). Subharmonic generation by resonant three-wave interaction of deep-water capillary waves. Physics of Fluids, 25, 1938–1943.

    Google Scholar 

  • Barkley, D., & Henderson, R. D. (1996). Three-dimensional Floquet stability analysis of the wake of a circular cylinder. Journal of Fluid Mechanics, 322, 215–24l.

    MATH  Google Scholar 

  • Bech, K. H., Henningson, D. S., & Henkes, R. A. W. M. (1998). Linear and nonlinear development of localized disturbances in zero and adverse pressure gradient boundary-layers. Physics of Fluids, 10, 1405–1418.

    MathSciNet  MATH  Google Scholar 

  • Benjamin, T. B. (1967). Internal waves of permanent form in fluids of great depth. Journal of Fluid Mechanics, 29, 559–592.

    MATH  Google Scholar 

  • Benjamin, T. B. (1992). A new kind of solitary wave. Journal of Fluid Mechanics, 245, 401–41l.

    MathSciNet  MATH  Google Scholar 

  • Benjamin, T. B., & Ursell, F. (1954). The stability of the plane free surface of a liquid in vertical periodic motion. Proceedings of the Royal Society of London, A 225, 505–515.

    MathSciNet  MATH  Google Scholar 

  • Benney, D. J. (1961). A non-linear theory for oscillations in a parallel flow. Journal of Fluid Mechanics, 10, 209–236.

    MathSciNet  MATH  Google Scholar 

  • Benney, D. J. (1964). Finite amplitude effects in an unstable laminar boundary layer. Physics of Fluids, 7, 319–326.

    MathSciNet  MATH  Google Scholar 

  • Benney, D. J., & Gustavsson, L. H. (1981). A new mechanism for linear and nonlinear hydrodynamic instability. Studies in Applied Mathematics, 64, 185–209.

    MathSciNet  MATH  Google Scholar 

  • Benney, D. J., & Lin, C. C. (1960). On the secondary motion induced by oscillations in a shear flow. Physics of Fluids, 3, 656–657.

    Google Scholar 

  • Benney, D. J., & Niell, A. M. (1962). Apparent resonances of weakly nonlinear standing waves. Journal of Mathematical Physics, 41, 254–262.

    MathSciNet  MATH  Google Scholar 

  • Berlin, S. (1998). Oblique waves in boundary layer transition. Doctoral Thesis, TRITA-MEK Technical Report 1998:7, Stockholm: KTH Royal Institute of Technology.

    Google Scholar 

  • Berlin, S., Lundbladh, A., & Henningson, D. S. (1994). Spatial simulations of oblique transition in a boundary layer. Physics of Fluids, 6, 1949–1951.

    Google Scholar 

  • Berlin, S., Wiegel, M., & Henningson, D. S. (1999). Numerical and experimental investigations of oblique boundary layer transition. Journal of Fluid Mechanics, 393, 23–57.

    MATH  Google Scholar 

  • Bertolotti, F. P. (1985). Temporal and spatial growth of subharmonic disturbances in Falkner-Skan flows. M.S. Thesis, Blacksburg: Virginia Polytechnic Institute and State University.

    Google Scholar 

  • Betchov, R. (1960). On the mechanism of turbulent transition. Physics of Fluids, 3, 1026–1027.

    Google Scholar 

  • Bloembergen, N. (1965). Nonlinear optics. New York: Benjamin.

    Google Scholar 

  • Bloembergen, N. (1968). Nonlinear optics. In N. J. Zabusky (Ed.), Topics in nonlinear physics (pp. 425–484), New York: Springer.

    Google Scholar 

  • Bogdanova-Ryzhova, E. V., & Ryzhov, O. S. (1995). Solitary-like waves in boundary layer flows and their randomization. Philosophical Transactions of the Royal Society of London, A 352, 389–404.

    MathSciNet  MATH  Google Scholar 

  • Boiko, A. B., Grek, G. R., Dovgal A. V., & Kozlov, V. V. (1999). Origin of turbulence in near-wall flows. Novosibirsk (in Russian): Nauka.

    Google Scholar 

  • Borodulin, V. I., & Kachanov, Yu. S. (1988). Role of the mechanism of local secondary instability in K-breakdown of boundary layer. Izv. Sib. Otdel. Akad. Nauk SSSR, Ser. Tekh. Nauk .Bull. Siberian Div. Acad. Sci. USSR, Ser. Engn. Sci., 18, 65–77. (transl: Soviet Journal of Applied Physics, 3, 70–81, 1989).

    Google Scholar 

  • Borodulin, V. I., & Kachanov, Yu. S. (1989). Cascade of harmonic and parametric resonances in K-regime of boundary-layer breakdown. (In Russian) Modelirovanie v Mekhanike (Simulation in Mechanics), 3(20), No. 2, 38–45.

    Google Scholar 

  • Borodulin, V. I., & Kachanov, Yu. S. (1992). Experimental study of soliton-like coherent structures. In Eddy structure identification in free turbulent shear flows. IUTAM Symposium, Poitiers.

    Google Scholar 

  • Borodulin, V. I., & Kachanov, Yu. S. (1994). Experimental study of nonlinear stages of a boundary layer breakdown. In S. P. Lin, W. R. C Phillips & D. T. Valentine (Eds.), Nonlinear stability of nonparallel flows (pp. 69–80). Berlin: Springer.

    Google Scholar 

  • Borodulin, V. I., & Kachanov, Yu. S. (1995). Formation and development of coherent structures in a transitional boundary layer. Zh. Prikl. Mekh. Tekh. Fiz., No.4 60–97 (Engl. transl.: Journal of Applied Mechanics and Technical Physics, 36, 532–566).

    MathSciNet  Google Scholar 

  • Borodulin, V. I., Kachanov, Yu. S., & Koptsev, D. B. (2000). Experimental study of tuned and detuned resonance interactions of instability waves in self-similar boundary layer with an adverse pressure gradient. In C. Dopazo et al. (Ed.), Advances in turbulence, 8 (pp. 149–154). Barcelona: International Center for Numerical Mathematics in Engineering (CIMNE).

    Google Scholar 

  • Bouthier, M. (1973). Stabilité linéaire des écoulements presque parallèles. II. La couche limite de Blasius. Journal de Mécanique, 12, 76–95.

    Google Scholar 

  • Bowles, R. I. (2000). Transition to turbulent flow in aerodynamics. The Philosophical Transactions of the Royal Society of London, A 358, 245–260.

    MathSciNet  MATH  Google Scholar 

  • Brandt, L., Andersson, P., & Henningson, D. S. (2000). Secondary instability of streaks in boundary layers. In C. Dopazo et al. (Eds.), Advances in turbulence, 8 (pp. 141–144). Barcelona: International Center for Numerical Mathematics in Engineering (CIMNE).

    Google Scholar 

  • Brekhovskikh, L. M., Goncharov, V. V., Kurtepov, V. M., & Naugolnykh, K. A. (1972). Resonant exitation of internal waves by non-linear interactions of surface waves. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana, 8, 192–203. (transl: Journal Izvestiya, Atmospheric and Oceanic Physics, 8, 112–117).

    Google Scholar 

  • Bretherton, F. P. (1964). Resonant interactions between waves. The case of discrete oscillations. Journal of Fluid Mechanics, 20, 457–479.

    MathSciNet  Google Scholar 

  • Breuer, K. S. (1988). The development of a localized disturbance in a boundary layer. Ph. D. Thesis, Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. (MIT).

    Google Scholar 

  • Breuer, K. S., Cohen, J., & Haritonidis, J. H. (1997). The late stages of transition induced by a low-amplitude wavepacket in a laminar boundary layer. Journal of Fluid Mechanics, 340, 395–411.

    MathSciNet  Google Scholar 

  • Breuer, K. S., & Haritonidis, J. H. (1990). The evolution of localized disturbances in a laminar boundary layer. Part 1. Weak disturbances. Journal of Fluid Mechanics, 220, 569–594.

    Google Scholar 

  • Breuer, K. S., & Landahl, M. T. (1990). The evolution of a localized disturbance in a laminar boundary layer. Part 2. Strong disturbances. Journal of Fluid Mechanics, 220, 595–621.

    Google Scholar 

  • Browand, F. K (1966). An experimental investigation of the instability of an incompressible separated shear layer. Journal of Fluid Mechanics, 26, 281–307.

    Google Scholar 

  • Butler, K. M., & Farell, B. F. (1992). Three-dimensional optimal perturbations in viscous shear flow. Physics of Fluids A, 4, 1637.

    Google Scholar 

  • Cairns, R. A. (1979). The role of negative energy waves in some instabilities of parallel flows. Journal of Fluid Mechanics, 92, 1–14.

    MATH  Google Scholar 

  • Case, K. M. (1960). Stability of inviscid plane couette flow. Physics of Fluids, 3, 143–148.

    MathSciNet  Google Scholar 

  • Chang, C.-L., & Malik, M. R. (1992). Oblique mode breakdown in a supersonic boundary layer using nonlinear PSE. In M. Y. Hussaini, A. Kumar, & C. L. Streett (Eds.), Instability, transition, and turbulence (pp. 231–241). New York: Springer.

    Google Scholar 

  • Chang, C.-L., & Malik, M. R. (1994). Oblique wave breakdown and secondary instability in supersonic boundary layers. Journal of Fluid Mechanics, 273, 323–360.

    MATH  Google Scholar 

  • Chen, M.-Z., & P. Bradshaw, (1984) Calculation of three-dimensional instability of Blasius boundary layer. Journal of American Institute of Aeronautics and Astronautics, 22, 301–303.

    MATH  Google Scholar 

  • Chirikov, B. V. (1979). A universal instability of many-dimensional oscillator systems. Physics Reports, 52, 263–379.

    MathSciNet  Google Scholar 

  • Christodoulides, P., & Dias, F. (1994). Resonant capillary-gravity interfacial waves. Journal of Fluid Mechanics, 265, 303–343.

    MathSciNet  MATH  Google Scholar 

  • Clever, R. M., & Busse, F. H. (1974). Transition to time-dependent convection. Journal of Fluid Mechanics, 65, 625–645.

    MATH  Google Scholar 

  • Coddington, E. A., & Levinson, N. (1955) The theory of ordinary differential equations. New York: McGraw-Hill.

    Google Scholar 

  • Cohen, J. (1994). The initial evolution of a wave packet in a laminar boundary layers. Physics of Fluids, 6, 1133–1143.

    MathSciNet  MATH  Google Scholar 

  • Cohen, J., Breuer, K. S., & Haritonidis, J. H. (1991). On the evolution of a wave packet in a laminar boundary layer. Journal of Fluid Mechanics, 225, 575–606.

    Google Scholar 

  • Corke, T. C. (1987). Measurements of resonant phase locking in unstable axisymmetric jets and boundary layers. In R. W. Miksad, T. R. Akylas & T. Herbert, (Eds.), Nonlinear wave interactions in fluids (pp. 37–65) AMD-Vol. 87. New York: American Society of Mechanical Engineers.

    Google Scholar 

  • Corke, T. C. (1989). Resonant three-dimensional modes in transitional boundary layers—structure and control. AIAA Paper No. 89-1001.

    Google Scholar 

  • Corke, T. C. (1990). Effect of controlled resonant interactions and mode detuning on turbulent transition in boundary layers. In D. Arnal & R. Michel (Eds.), Laminar-turbulent transition, (pp. 151–178). Berlin: Springer.

    Google Scholar 

  • Corke, T. C. (1995). Three-dimensional mode growth in boundary layers with tuned and detuned subharmonic resonance. The Philosophical Transactions of the Royal Society of London, A 352, 453–471.

    MATH  Google Scholar 

  • Corke, T. C., & Gruber, S. (1996). Resonant growth of three-dimensional modes in Falkner-Skan boundary layers with adverse pressure gradients. Journal of Fluid Mechanics, 320, 211–233.

    Google Scholar 

  • Corke, T. C., Koga, D., Drubka, R., & Nagib, H. (1977). A new technique for introducing controlled sheets of smoke streaklines in wind tunnels. The Institute of Electrical and Electronics Engineers Publication, 77, CH 1251–1258 AES.

    Google Scholar 

  • Corke, T. C., & Mangano, R. A. (1988). Transition of a boundary layer: controlled fundamental-subharmonic interactions. In H. W. Liepmann & R. Narasimha (Eds.), Turbulence management and relaminarization (pp. 199–213). Berlin: Springer.

    Google Scholar 

  • Corke, T. C., & Mangano, R. A. (1989). Resonant growth of three-dimensional modes in transitioning boundary layers. Journal of Fluid Mechanics, 209, 93–150.

    Google Scholar 

  • Craik, A. D. D. (1968). Resonant gravity-wave interactions in a shear flow. Journal of Fluid Mechanics, 34, 531–549.

    MATH  Google Scholar 

  • Craik, A. D. D. (1971). Nonlinear resonant instability in boundary layers. Journal of Fluid Mechanics, 50, 393–413.

    MATH  Google Scholar 

  • Craik, A. D. D. (1975). Second order resonance and subcritical instability. Proceedings of the Royal Society of London, A 343, 351–362.

    MathSciNet  MATH  Google Scholar 

  • Craik, A. D. D. (1978). Evolution in space and time of resonant wave triads. II A class of exact Solutions. Proceedings of the Royal Society of London A 363, 257–269.

    MathSciNet  MATH  Google Scholar 

  • Craik, A. D. D. (1980). Nonlinear evolution and breakdown in unstable boundary layers. Journal of Fluid Mechanics, 99, 247–265.

    MathSciNet  MATH  Google Scholar 

  • Craik, A. D. D. (1985). Wave interactions and fluid flows. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Craik, A. D. D. (1995). Stability of two- and three-dimensional time-dependent flows with locally uniform strain rates. In R. Kobayashi (Ed.), Laminar-turbulent transition (pp. 53–58). Berlin: Springer.

    Google Scholar 

  • Craik, A. D. D., & Adam, J. A. (1978). Evolution in space and time of resonant wave triads. I. The “pump-wave approximation”. Proceedings of the Royal Society of London, A 363, 243–255.

    MathSciNet  MATH  Google Scholar 

  • Craik, A. D. D., & Adam, J. A. (1979). “Explosive” resonant wave interactions in a three-layer fluid flow. Journal of Fluid Mechanics, 92, 15–33.

    Google Scholar 

  • Crouch, J. D., & Herbert, T. (1993). Nonlinear evolution of secondary instabilities in boundary-layer transition. Theoretical and Computational Fluid Dynamics, 4, 151–175.

    MATH  Google Scholar 

  • Danaila, I., Dusek, J., & F. Anselmet (1998). Nonlinear dynamics at a Hopf bifurcation with axisymmetry breaking in a jet. Physical Review, E 57, R3695–R3698.

    Google Scholar 

  • Dangelmayr, G. (1986). Steady-state mode interactions in the presence of O(2)-symmetry. Dynamics and Stability of Systems, 1, 159–185.

    MathSciNet  MATH  Google Scholar 

  • Davidson, R. C. (1972). Methods in nonlinear plasma theory. Academic: New York.

    Google Scholar 

  • Davis, R. E., & Acrivos, A. (1967). Solitary internal waves in deep water. Journal of Fluid Mechanics, 29, 593–607.

    MATH  Google Scholar 

  • Davis, S. H. (1976). The stability of time-periodic flow. Annual Review of Fluid Mechanics, 8, 57–74.

    Google Scholar 

  • Demekhin, E. A., & Shkadov, V. Ya. (1986). On the theory of solitons in systems with dissipation. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 3, 91–97. (transl: Fluid Dynamics, 21, 415–420).

    MathSciNet  Google Scholar 

  • Dimant, Y. S. (2000). Nonlinearly saturated dynamical state of a threewave mode-coupled dissipative system with linear instability. Physical Review Letters, 84, 622–625.

    Google Scholar 

  • Drazin, P. G. (1983). Solitons. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Drazin, P. G., & Howard, L. (1966). Hydrodynamic stability of parallel flows of inviscid fluid. Advances in Applied Mechanics, 9, 1–89.

    Google Scholar 

  • Drazin, P. G., & Johnson, R. S. (1989). Solitons: An introduction. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Dryden, H. L., Murnahan, F. P., & Bateman, H. (1956). Hydrodynamics. New York: Dover.

    MATH  Google Scholar 

  • Dryganets, S. V., Kachanov, Yu. S., Levchenko, V. Ya., & Ramazanov, M. P. (1990). Resonant flow randomization in K-regime of boundary layer transition. Zh. Prikl. Mekh. Tekh. Fiz., 2, 83–94. (transl: Journal of Applied Mechanics and Technical Physics, 31, 239–249).

    Google Scholar 

  • Elofsson, P. A. (1998a). An experimental study of oblique transition in a Blasius boundary layer flow. TRITA-MEK technical reports 1998:4. Stockholm: KTH Royal Institute of Technology.

    Google Scholar 

  • Elofsson, P. A. (1998b). Experiments in oblique transition in wall bounded shear flows. Doctoral Thesis, TRIITA-MEK technical reports 1998:5. Stockholm: KTH Royal Institute of Technology.

    Google Scholar 

  • Elofsson, P. A., & Alfredsson, P. H. (1995). Experiments on nonlinear interaction between oblique Tollmien-Schlichting waves. In R. Kobayashi (Ed.), Laminar-turbulent transition (pp. 465–472). Berlin: Springer.

    Google Scholar 

  • Elofsson, P. A., & Alfredsson, P. H. (1998). An experimental study of oblique transition in plane Poiseuille flow. Journal of Fluid Mechanics, 358, 177–202.

    Google Scholar 

  • Elofsson, P. A., & Alfredsson, P. H. (2000). An experimental study of oblique transition in a Blasius boundary layer flow. European Journal of Mechanics B/Fluids, 19, 615–636.

    MATH  Google Scholar 

  • Elofsson, P. A., & Lundbladh, A. (1994). Ribbon induced oblique transition in plane Poiseuille flow. In D. S. Henningson (Ed.), Bypass transitionproceedings from a mini -workshop (pp. 29–41, TRITA-MEK Technical Reports 1994:14). Stockholm: Royal Institute of Technology.

    Google Scholar 

  • Faraday, M. (1831). On a peculiar class of acoustical figures, and on certain forms assumed by groups of particles upon vibrating elastic surfaces. The Philosophical Transactions of the Royal Society in London, 121, 299–340.

    Google Scholar 

  • Fasel, H. (1990). Numerical simulation of instability and transition in boundary layer flows. In D. Arnal & R. Michel (Eds.), Laminar-turbulent transition (pp. 587–598). Berlin: Springer.

    Google Scholar 

  • Fasel, H., & Konzelmann, U. (1990). Non-parallel stability of a flatplate boundary layer using the complete Navier-Stokes equations. Journal of Fluid Mechanics, 221, 311–147.

    MATH  Google Scholar 

  • Fasel, H., Rist, U., & Konzelmann, U. (1987). Numerical investigation of the three-dimensional development in boundary-layer transition. AIAA Paper No. 87-1203. (also in AIAA Journal, 28, 29–37. 1990).

    Google Scholar 

  • Fasel, H., Thumm, A., & Bestek, H. (1993). Direct numerical simulation of transition in supersomic boundary layers: Oblique breakdown. In L. D. Kral & T. A. Zang (Eds.), Transitional and turbulent compressible flows (pp. 77–92, FED-Vol. 151). New York: American Society of Mechanical Engineers.

    Google Scholar 

  • Friedel, H., Laedke, E. W., & Spatschek, K. H. (1995). Bifurcations and nonlinear dynamics of surface waves in Faraday resonance. Journal of Fluid Mechanics, 284, 341–358.

    MathSciNet  MATH  Google Scholar 

  • Gaponenko, V. R., & Kachanov, Yu. S. (1994). New methods of generation of controlled spectrum instability waves in boundary layers. In Proceedings of the International Conference on Methods of Aerophysical Research (Part 1, pp. 90–97). Russia: Institute of Theoretical and Applied Mechanics.

    Google Scholar 

  • Gaster, M. (1962). A note on the relation between temporally increasing and spatially increasing disturbances in hydrodynamic stability. Journal of Fluid Mechanics, 14, 222–224.

    MathSciNet  MATH  Google Scholar 

  • Gaster, M. (1975). A theoretical model of a wave packet in a boundary layer on a flat plate. Proceedings of the Royal Society of London, A 347, 271–289.

    Google Scholar 

  • Gaster, M. (1980). On wave packets in laminar boundary layers. In R. Eppler & H. Fasel (Eds.), Laminar-turbulent transition (pp. 14–16). Berlin: Springer.

    Google Scholar 

  • Gaster, M. (1994). On transition to turbulence in boundary layers. In T. Tatsumi, (Ed.), Turbulence and chaotic phenomena in fluids (pp. 99–106). Amsterdam: North-Holland.

    Google Scholar 

  • Gaster, M. (1990). The nonlinear phase of wave growth leading to chaos and breakdown to turbulence in a boundary layer as an example of an open system. Proceedings of the Royal Society of London, A 430, 3–24.

    Google Scholar 

  • Gaster, M., & Grant, I. (1975). An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proceedings of the Royal Society of London, A 347, 253–269.

    Google Scholar 

  • Gatski, T. B. (1991). Review of incompressible fluid flow computations using the velocity-vorticity formulation. Applied Numerical Mathematics, 7, 227–239.

    MathSciNet  MATH  Google Scholar 

  • Goldstein, M. E. (1994). Nonlinear interactions between oblique instability waves on nearly parallel shear flows. Physics of Fluids, 6, 724–735.

    MathSciNet  MATH  Google Scholar 

  • Goldstein, M. E. (1995). The role of nonlinear critical layers in boundary-layer transition. The Philosophical Transactions of the Royal Society of London, A 352, 425–442.

    MATH  Google Scholar 

  • Goldstein, M. E., & Choi, S.-W. (1989). Nonlinear evolution of interacting oblique waves on two-dimensional shear layers. Journal of Fluid Mechanics, 207, 97–120 (also Corrigendum, ibid., 216, 659–663, 1989).

    MathSciNet  MATH  Google Scholar 

  • Goldstein, M. E., & Lee, S. S. (1992). Fully coupled resonant-triad interaction in an adverse-pressure-gradient boundary layer. Journal of Fluid Mechanics, 245, 523–551.

    MathSciNet  MATH  Google Scholar 

  • Goncharov, V. P. (1984). Hamiltonian representation of the equation of hydrodynamics and its use for describing wave motions in shear flows. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana, 20, 125–135 (transl: Izvestiya, Atmospheric and Oceanic Physics, 20, 92–99).

    Google Scholar 

  • Goncharov, V. V. (1981). The influence of high-order nonlinearity on three-wave resonance processes. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana, 17, 88–94 (transl: Izvestiya, Atmospheric and Oceanic Physics, 17, 65–69).

    MathSciNet  Google Scholar 

  • Görtler, H., & Witting, H. (1958). Theorie der sekundären Instabilität der laminaren Grenzschichten. In H. Görtler (Ed.), Grenzschichtforschungboundary-layer research (pp. 110–126). Berlin: Springer.

    Google Scholar 

  • Gustavsson, L. H. (1978). On the evolution of disturbances in boundary-layer flows. Technical Reports TRITA-Mek 78-02. Stockholm: Royal Institute of Technology.

    Google Scholar 

  • Guthart, G. S., & Wu, T. Y. (1994). On the stability of standing solitons in Faraday resonance. In S. P. Lin, W. R. S. Phillips & D. T. Valentine (Eds.), Nonlinear instability of nonparallel flows (pp. 397–406). Berlin: Springer.

    Google Scholar 

  • Hama, F. R., & Nutant, J. (1963). Detailed flow observations in the transition process in a thick boundary layer. In Proceedings of the 1963 Heat Transfer and Fluid Mechanics Institute (pp. 73–93). California: Stanford University Press.

    Google Scholar 

  • Hamilton, J. M., J. Kim, & Waleffe, F. (1995). Regeneration mechanisms of near-wall turbulence structures. Journal of Fluid Mechanics, 287, 317–348.

    MATH  Google Scholar 

  • Healey, J. J. (1994). 2.1 resonance for modulated boundary-layer instability waves: New experimental results showing quadratic breakdown. Physical Review Letters, 73, 1107–1109.

    Google Scholar 

  • Healey, J. J. (1995). A new boundary layer resonance enhanced by wave modulation: Theory and experiment. Journal of Fluid Mechanics, 304, 411–482.

    MathSciNet  Google Scholar 

  • Healey, J. J. (1996). Experiments on 2:1 resonance in the Blasius boundary layer. In S. Gavrilakis, L. Machiels, & P. A. Monkewitz, (Eds.), Advances in turbulence 6 (pp. 337–340). Dordrecht: Kluwer.

    Google Scholar 

  • Henderson, D. M., & Hammack, J. L. (1987). Experiments on ripple instabilities. Part1. Resonant triads. Journal of Fluid Mechanics, 184, 15–41.

    Google Scholar 

  • Henningson, D. S. (1988). The inviscid initial value problem for a piecewise linear mean flow. Studies in Applied Mathematics, 78, 31–56.

    MathSciNet  MATH  Google Scholar 

  • Henningson, D. S., Berlin, S., & Lundbladh, A. (1995). Spatial simulations of bypass transition in boundary layers. In R. Kobayashi (Ed.), Laminar-turbulent transition (pp. 263–270). Berlin: Springer.

    Google Scholar 

  • Henningson, D. S., Lundbladh, A., & Johansson, A. V. (1993). A mechanism for bypass transition from localized disturbance in wall-bounded shear flows. Journal of Fluid Mechanics, 250, 169–207.

    MATH  Google Scholar 

  • Herbert, T. (1983a). Secondary instability of plane channel flow to subharmonic three-dimensional disturbances. Physics of Fluids, 26, 871–874.

    Google Scholar 

  • Herbert, T. (1983b). Subharmonic three-dimensional disturbances in unstable plane shear flows. AIAA Paper No. 83-1759.

    Google Scholar 

  • Herbert, T. (1984a). Analysis of the subharmonic route to transition in boundary layers. AIAA Paper No. 84-0009.

    Google Scholar 

  • Herbert, T. (1984b). Modes of secondary instability in plane Poiseuille flow. In T. Tatsumi (Ed.), Turbulence and chaotic phenomena in fluids (pp. 53–58). Amsterdam: North-Holland.

    Google Scholar 

  • Herbert, T. (1985). Three-dimensional phenomena in the transitional flat-plate boundary layer. American Institute of Aeronautics and Astronautics Paper No. 85-0489.

    Google Scholar 

  • Herbert, T. (1986). Vortical mechanisms in shear flow transition. In U. Schumann & R. Friedrich (Eds.), Direct and large eddy simulation of turbulence (pp. 19–36). Wiesbaden: Vieweg.

    Google Scholar 

  • Herbert, T. (1987). Analysis of secondary instabilities in boundary layers. In J. P. Lamb (Ed.), Proceedings of 10th U.S. National Congress of Applied Mechanics (pp. 445–456). New York: American Society of Mechanical Engineers.

    Google Scholar 

  • Herbert, T. (1988a). Secondary instability of boundary layers. The Annual Review of Fluid Mechanics, 20, 487–526.

    Google Scholar 

  • Herbert, T. (1988b). Onset of transition in boundary layers. International Journal for Numerical Methods in Fluids, 8, 1151–1164.

    Google Scholar 

  • Herbert, T., & Morkovin, M. V. (1980). Dialogue on bridging some gaps in stability and transition research. In R. Eppler & H. Fasel, (Eds.), Laminar-turbulent transition (pp. 47–72). Berlin: Springer.

    Google Scholar 

  • Herbert, T., & Bertolotti, F. P. (1985). The effect of pressure gradients on the growth of subharmonic disturbances in boundary layers. In T. J. Mueller (Ed.), Proceedings of the conference on low reynolds number airfoil aerodynamics (pp. 65–76). Notre Dame: University of Notre Dame, Department of Mechanical Engineering.

    Google Scholar 

  • Herbert, T., Bertolotti, F. P., & Santos, G. R. (1987). Floquet analysis of secondary instability in shear flows. In D. L. Dwoyer & M. Y. Hussaini (Eds.), Stability of time-dependent and spatially varying flows (pp. 43–57). New York: Springer.

    Google Scholar 

  • Herbert, T., & Santos, G. R. (1987). On the mechanism of transition in boundary layers. AIAA Paper No. 87-1201.

    Google Scholar 

  • Hogan, S. J. (1984). Subharmonic generation of deep-water capillary waves. Physics of Fluids, 27, 42–45.

    Google Scholar 

  • Holmes, P., Lumley, J. L., & Berkooz, G. (1996). Turbulence, coherent structures, dynamical systems and symmetry. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Itoh, N. (1980). Three-dimensional growth of finite wave disturbances in plane Poiseuille flow. Transactions of the Japan Society for Aeronautical and Space Sciences, 23, 91–103.

    Google Scholar 

  • Jennings, M. J., Stewart, P. A., & Wu, X. (1995). The resonant-triad interaction in boundary-layer transition. In R. Kobayashi (Ed.), Laminar-turbulent transition (pp. 365–372). Berlin: Springer.

    Google Scholar 

  • Joslin, R. D., Streett, C. L., & Chang, C.-L. (1993). Spatial direct numerical simulation of boundary-layer transition mechanisms: Validation of PSE theory. Theoretical and Computational Fluid Dynamics, 4, 271–288.

    MATH  Google Scholar 

  • Jurkus, A., & Robson, P. N. (1960). Saturation effects in a travelling-wave parametric amplifier. Proceedings IEE, 107b, 119–122.

    Google Scholar 

  • Kachanov, Yu. S. (1987). On the resonant nature of the breakdown of a laminar boundary layer. Journal of Fluid Mechanics, 184, 43–74.

    Google Scholar 

  • Kachanov, Yu. S. (1990). Secondary and cascade resonant instabilities of boundary layers. Wave-resonant concept of a breakdown and its substantiation. In D. Arnal & R. Michel, (Eds.), Laminar-turbulent transition (pp. 65–80). Springer: Berlin.

    Google Scholar 

  • Kachanov, Yu. S. (1991a). ResonanT-Soliton nature of boundary layer transition. Russian Journal of Theoretical and Applied Mechanics, 1, 141–173.

    Google Scholar 

  • Kachanov, Yu. S. (1991b). The mechanism of formation and breakdown of soliton-like coherent structures in boundary layers, In A. V. Johansson & P. H. Alfredsson (Eds.), Advances in turbulence 3, (pp. 42–51). Berlin: Springer.

    Google Scholar 

  • Kachanov, Yu. S. (1994a). Physical mechanism of laminar boundary-layer transition. Annual Review of Fluid Mechanics, 26, 411–482.

    Google Scholar 

  • Kachanov, Yu. S. (1994b). Nonlinear breakdown of laminar boundary layer. In S. P. Lin, W. R. C. Phillips, & D. T. Valentine (Eds.), Nonlinear instability of nonparallel flows (pp. 21–51). Berlin: Springer.

    Google Scholar 

  • Kachanov, Yu. S. (1996). Three-dimensional instabilities in boundary layers. In R. A. W. M. Henkes & J. L. van Ingen (Eds.), Transitional boundary layers (pp. 55–79). Amsterdam: North-Holland.

    Google Scholar 

  • Kachanov, Yu. S., Kozlov, V. V., & Levchenko, V. Ya. (1977). Nonlinear development of a wave in a boundary layer. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 3, 49–58 (transl: Fluid Dynamics, 12, 383–390).

    Google Scholar 

  • Kachanov, Yu. S., Kozlov, V. V., & Levchenko, V. Ya. (1978). Origin of Tollmien-Schlichting waves in boundary layer under the influence of external disturbances. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 5, 85–94 (transl: Fluid Dynamics, 13, 704–711).

    Google Scholar 

  • Kachanov, Yu. S., Kozlov, V. V., & Levchenko, V. Ya. (1980). Experiments on nonlinear interaction of waves in boundary layer. In R. Eppler & H. Fasel (Eds.), Laminar-turbulent transition (pp. 135–152). Berlin: Springer.

    Google Scholar 

  • Kachanov, Yu. S., Kozlov, V. V., & Levchenko, V. Ya. (1982). Origin of turbulence in a boundary layer. Novosibirsk (in Russian): Nauka Press.

    Google Scholar 

  • Kachanov, Yu. S., Kozlov, V. V., Levchenko, V. Yu., & Ramazanov, M. P. (1984). Experimental study of K-regime of breakdown of laminar boundary layer. Preprint No. 9-84, Inst. Teor. i Prikl. Mekh. Novosibirsk (in Russian): Institute of Theoretical and Applied Mechanics.

    Google Scholar 

  • Kachanov, Yu. S., Kozlov, V. V., Levchenko, V. Yu., & Ramazanov, M. P. (1985). On nature of K-breakdown of a laminar boundary layer. New experimental data. In V. V. Kozlov (Ed.), Laminar-turbulent transition (pp. 61–73). Berlin: Springer.

    Google Scholar 

  • Kachanov, Yu. S., Kozlov, V. V., Levchenko, V. Yu., & Ramazanov, M. P. (1989). The nature of K-breakdown of laminar boundary layer. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk (Bull. Siber. Div. Akad. Sci. USSR, Ser. Engn. Sci.), 2, 142–158 (in Russian).

    MathSciNet  Google Scholar 

  • Kachanov, Yu. S., & Levchenko, V. Ya. (1982). Resonant interactions of disturbances in transition to turbulence in a boundary layer, Reprint No. 10-82. Inst. Teor. i Prikl. Mekh. (Institute of Theoretical and Applied Mechanics). Novosibirsk (in Russian): Siberian Division of the USSR Academy of Sciences.

    Google Scholar 

  • Kachanov, Yu. S., & Levchenko, V. Ya. (1984). The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer. Journal of Fluid Mechanics, 138, 209–247.

    Google Scholar 

  • Kachanov, Yu. S., & Michalke, A. (1994). Three-dimensional instability of flate-plate boundary layers: Theory and experiment. The European Journal of Mechanics, B/Fluids, 13, 401–422.

    MATH  Google Scholar 

  • Kachanov, Yu. S., & Michalke, A. (1995). Three-dimensional instability of the Blasius boundary layer. In R. Kobayashi (Ed.), Laminar-turbulent transition (pp. 473–480). Berlin: Springer.

    Google Scholar 

  • Kachanov, Yu. S., Ryzhov, O. S., & Smith F. T. (1993). Formation of solitons in transitional boundary layers: Theory and experiment. Journal of Fluid Mechanics, 251, 273–297.

    MathSciNet  Google Scholar 

  • Kaiser, R., & Xu, L. X. (1998). Nonlinear stability of the rotating Bénard problem, the case Pr = 1. Nonlinear Differential Equations and Applications (NoDEA), 5(3), 283–307.

    Google Scholar 

  • Karpman, V. I. (1975). Nonlinear waves in dispersive media. Pergamon: Oxford.

    Google Scholar 

  • Kaup, D. J. (1981). The linearity of nonlinear soliton equations and the three-wave resonance interaction. In R. E. Enns, B. L. Jones, R. M. Miura, & S. S. Rangnekar (Eds.), Nonlinear phenomena in physics and biology (pp. 95–123). New York: Plenum.

    Google Scholar 

  • Kaup, D. J., Reiman, A. H., & Bers, A. (1979). Space-time evolution of nonlinear three-wave interactions. I. Interactions in a homogeneus medium. Reviews of Modern Physics, 51, 275–309 (also Errata, ibid., 51, 915–917).

    MathSciNet  Google Scholar 

  • Kelly, R. E. (1967). On the stability of an inviscid shear layer which is periodic in space and time. Journal of Fluid Mechanics, 27, 657–689.

    MATH  Google Scholar 

  • Kelly, R. E. (1968). On the resonant interaction of neutral disturbances in two inviscid shear flows. Journal of Fluid Mechanics, 31, 789–799.

    MATH  Google Scholar 

  • Khokhlov, A. P. (1993). The theory of resonant interaction of Tollmien-Schlichting waves. Prikl. Mekh. i Tekh. Fiz., 4, 65–73 (transl: Journal of Applied Mechanics and Technical Physics, 34, 508–519).

    MathSciNet  Google Scholar 

  • Khokhlov, A. P. (1994). Asymptotic analysis of resonant interactions in a boundary layer. In S. P. Lin, W. R. S. Phillips, & D. T. Valentine (Eds.), Nonlinear instability of nonparallel flows (pp. 81–85). Berlin: Springer.

    Google Scholar 

  • Khokhlov, R. V. (1961). Wave propagation in nonlinear lines with dispersion. Radiotekh. i Elektronika, 6, 1116–1127 (transl: Radio Engineering and Electronic Physics, 6, 993–1003).

    Google Scholar 

  • Klebanoff, P. S., & Tidstrom, K. D. (1959). Evolution of amplified waves leading to transition in a boundary layer with zero pressure gradient. NACA Technical Note No. D-195.

    Google Scholar 

  • Klebanoff, P. S., Tidstrom, K. D., & Sargent, L. M. (1962). The three-dimensional nature of boundary-layer instability. Journal of Fluid Mechanics, 12, 1–34.

    MATH  Google Scholar 

  • Kleiser, L., & Zang, T. A (1991). Numerical simulation of transition in wall-bounded shear flows. Annual Review of Fluid Mechanics, 23, 495–537.

    Google Scholar 

  • Kloker, M. (1993). Direkte numerische Simulation des laminaren-turbulenten Sirömungsumechlages in einer stark verzögerten Grenzschicht. Dissertation, Universität Stuttgart, Germany.

    Google Scholar 

  • Kloker, M., & Fasel, H. (1995). Direct numerical simulation of boundary-layer transition with strong adverse pressure gradient. In R. Kobayashi (Ed.), Laminar-turbulent transition (pp. 481–488). Berlin: Springer.

    Google Scholar 

  • Kloker, M., Konzelmann, U., & Fasel, H. (1993). Outflow boundary conditions for spatial Navier-Stokes simulation of transitional boundary layers. AIAA Journal, 31, 620–628.

    Google Scholar 

  • Knapp, C. F., & Roache, P. J. (1968). A combined visual and hot-wire anemometer investigation of boundary-layer transition. AIAA Journal, 6, 29–36.

    Google Scholar 

  • Komoda, H. (1967). Nonlinear development of disturbance in a laminar boundary layer. Physics of Fluids, 10, S87–S94.

    Google Scholar 

  • Konzelmann, U. (1990). Numerische Untersuchungen zur räumlichen Entwicklung dreidimensionaler Wellenpaket in einer PlattengrenzschichT-Strömung. Dissertation, Universität Stuttgart, Germany.

    Google Scholar 

  • Konzelmann, U., Rist, U., & Fasel, H. (1987). Erzeugung dreidimensionaler, räumich angefachter Störwellen durch periodisches Ausblasen und Absaugen in einer Plattengrenzschichtströmung. Zs. angew. Math. Mech., 67, 298–300.

    Google Scholar 

  • Korteweg, D. J., & de Vries, G. (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine, 39(5), 422–443.

    MATH  Google Scholar 

  • Kosorygin, V. S. (1994). Stability and transition to turbulence in 2-D boundary layer under the influence of adverse pressure gradients. In S. P. Lin, W. R. C. Phillips & D. T. Valentine (Eds.), Nonlinear instability of nonparallel flows (pp. 86–97). Berlin: Springer.

    Google Scholar 

  • Kovasznay, L. S. G., Komoda, H., & Vasudeva, B. R. (1962). Detailed flow field in transition. In F. E. Ehlers, J. J. Kaurlarich, C. A. Sleicher, Jr., & R. E. Street (Eds.), Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute (pp. 1–26). Palo Alto: Stanford University Press.

    Google Scholar 

  • Kozlov, V. V., & Ramazanov, M. P. (1981). An experimental investigation of the stability of Poiseuille flow. Izv. Sib. Otd. Akad. Nauk SSSR, Ser Tekh. Nauk (Bull. Siber. Div. Acad. USSR, Ser. Engn. Sci.), 8, 45–48 (in Russian).

    Google Scholar 

  • Kozlov, V. V., & Ramazanov, M. P. (1983). Development of finite -amplitude disturbances in Poiseuille flow. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. I Gaza, 1, 43–47 (transl: Fluid Dynamics, 18, 30–33).

    Google Scholar 

  • Kozlov, V. V., & Ramazanov, M. P. (1984a). Development of finite-amplitude disturbances in Poiseuille flow. Journal of Fluid Mechanics, 147, 149–157.

    Google Scholar 

  • Kozlov, V. V., & Ramazanov, M. P. (1984b). Resonant interaction of disturbances in Poiseuille flow. Doklady Akademii Nauk SSSR, 275, 1346–1349 (transl: Soviet Physics Doklady, 29, 281–283).

    Google Scholar 

  • Kozlov, V. V., Levchenko V. Ya., & Saric, W. S. (1984). Formation of three-dimensional structures on the transition to turbulence in boundary layers. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 6, 42–50 (transl: Fluid Dynamics, 19, 893–901).

    Google Scholar 

  • Lamb, G. L, Jr. (1980). Elements of soliton theory. New York: Wiley.

    MATH  Google Scholar 

  • Landahl, M. T. (1975). Wave breakdown and turbulence. The SIAM Journal on Applied Mathematics, 28, 735–756.

    MATH  Google Scholar 

  • Landahl, M. T. (1980). A note on algebraic instability of inviscid parallel flow. Journal of Fluid Mechanics, 98, 243–251.

    MathSciNet  MATH  Google Scholar 

  • Landahl, M. T. (1990). On sublayer streaks. Journal of Fluid Mechanics, 212, 593–614.

    MATH  Google Scholar 

  • Landahl, M. T., Breuer, K. S., & Haritonidis, J. H. (1987). Transients and waves in boundary layer transition. In R. M. Miksad, T. R. Akylas, & T. Herbert (Eds.), Nonlinear wave interaction in Fluids (AMD-Vol. 87, pp. 17–21). New York: American Society of Mechanical Engineers.

    Google Scholar 

  • Landau, L. D. (1944). On the problem of turbulence. Doklady Akademii Nauk SSSR, 44, 339–342. (transl: in C.R. Acad. Sci. URSS, 44, 311–314, and in Collected Papers), (pp. 387–391). Oxford: Pergamon Press ( New York: Gordon and Breach, 1965).

    Google Scholar 

  • Laurien, E., & Kleiser, L. (1989). Numerical simulation of boundary-layer transition and transition control. Journal of Fluid Mechanics, 199, 403–440.

    MATH  Google Scholar 

  • Lee, C. B. (1998). New features of CS solitons and the formation of vortices. Physics Letters, A 247, 397–402.

    Google Scholar 

  • Lee, C. B. (2000). Possible universal transitional scenario in a flat plate boundary layer: Measurement and visualization. Physical Review, E 62, 3659–3670.

    Google Scholar 

  • Lee, C. B., Hong, Z. X., Kachanov, Yu. S., Borodulin, V. I., & Gaponenko, V. V. (2000). A study on transitional flat plate boundary layers: Measurement and visualization. Experiments in Fluids, 28, 243–25l.

    Google Scholar 

  • Liepmann, H. W., Brown, G. L., & Nosenchuck, D. M. (1982). Control of laminar-instability waves using a new technique. Journal of Fluid Mechanics, 118, 187–200.

    Google Scholar 

  • Liu, C. (1997). A numerical investigation of instability and transition in adverse pressure gradient boundary layers. Ph. D. Thesis, McGill University, Canada.

    Google Scholar 

  • Liu, C., & Maslowe, S. A. (1999). A numerical investigation of resonant interactions in adverse-pressure-gradient boundary layers. Journal of Fluid Mechanics, 378, 269–289.

    Google Scholar 

  • Loesch, A. Z. (1974). Resonant interactions between unstable and neutral baroclinic waves. Parts I and II. Journal of the Atmospheric Sciences, 31, 1177–1217.

    Google Scholar 

  • Longuet-Higgins, M. S., & Gill, A. E. (1967). Resonant interactions between planetary waves. Proceedings of the Royal Society of London, A 299, 120–140.

    Google Scholar 

  • Longuet-Higgings, M. S., & Smith, N. D. (1966). An experimant on third-order wave interactions. Journal of Fluid Mechanics, 25, 417–435.

    Google Scholar 

  • Lu, Q., & Henningson, D. S. (1990). Subcritical transition in plane Poiseuille flow. Bulletin of the American Physical Society, 35, 2288.

    Google Scholar 

  • Luchini, P. (2000). Reynolds-number-independent instability of the boundary layer over a flat plate surface. Optimal perturbations. Journal of Fluid Mechanics, 404, 289–309.

    MathSciNet  MATH  Google Scholar 

  • Mankbadi, R. R. (1990). Critical-layer nonlinearity in the resonance growth of three-dimensional waves in boundary layers. NASA Technical Memorandum No. 103639.

    Google Scholar 

  • Mankbadi, R. R. (1991). Resonant triad in boundary-layer stability, Parts I and II. NASA Technical Memorandum Nos. 105208 and 105209.

    Google Scholar 

  • Mankbadi, R. R. (1993a). The preferred spanwise wavenumber in subharmonic transition. In D. E. Ashpis, T. B. Gatski, & R. Hirsh (Eds.), Instabilities and turbulence in engineering flows (pp. 51–63). Dordrecht: Kluwer.

    Google Scholar 

  • Mankbadi, R. R. (1993b). Nonlinear interaction of frequency-detuned modes in boundary layers. AIAA Paper No. 93-0347.

    Google Scholar 

  • Mankbadi, R. R. (1994). Transition, turbulence and noise: Theory and applications for scientists and engineers. Boston: Kluwer.

    MATH  Google Scholar 

  • Mankbadi, R. R., Wu, X., & Lee, S. S. (1993). A critical lauer analysis of the resonant triad in boundary-layer trabsition: nonlinear interactions. Journal of Fluid Mechanics, 256, 85–106.

    MathSciNet  MATH  Google Scholar 

  • Marchenko, A. V. (1991). Resonance wave exitation in a heavy liquid beneath a viscoelastic plate. Prikl. Mekh. i Tekh. Fiz., 3, 101–109 (transl: Journal of Applied Mechanics and Technical Physics, 32, 395–401).

    MathSciNet  Google Scholar 

  • Marchenko, A. V. (1999). Stability of flexural-gravity waves and quadratic interactions. Izv. Ross. Akad. Nauk, Ser. Mekh. Zhidk. i Gaza, 1, 91–101 (transl: Fluid Dynamics, 34, 78–86).

    MathSciNet  Google Scholar 

  • Maseev (Maseyev), L. M. (1968a). Secondary instability of boundary layers. Trudy MIIT’a (Works of Moscow Institute of Transport Engineers), 222 (in Russian).

    Google Scholar 

  • Maseev (Maseyev), L. M. (1968b). Occurrence of three-dimensional perturbations in a boundary layer. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 6, 42–45 (transl: Fluid Dynamics, 3, 23–24).

    Google Scholar 

  • Maslennikova, I. I., & Zelman M. B. (Zel’man). (1985). On subharmonic-type laminar-turbulent transition in boundary-layer. In V. V. Kozlov (Ed.), Laminar-turbulent transition (pp. 21–28). Berlin: Springer.

    Google Scholar 

  • Maslowe, S. (1986). Critical layers in shear flows. Annual Review of Fluid Mechanics, 18, 405–432.

    MathSciNet  Google Scholar 

  • Matsuno, Y. (1996). Forced Benjamin-Ono equations and related topics. In F. Dias, J.-M. Ghidaglia, & J.-C. Saut (Eds.), Mathematical problems in the theory of water waves (pp. 145–156). Providence: American Mathematical Society.

    Google Scholar 

  • McGoldrick, L. F. (1965). Resonant interactions among capillary-gravity waves. Journal of Fluid Mechanics, 21, 305–331.

    MathSciNet  MATH  Google Scholar 

  • McGoldrick, L. F. (1970a). An experiment on second-order capillary-gravity resonant wave interactions. Journal of Fluid Mechanics, 40, 251–271.

    Google Scholar 

  • McGoldrick, L. F. (1970b). On Wilton’s ripples: A special case on resonant interactions. Journal of Fluid Mechanics, 42, 193–200.

    MATH  Google Scholar 

  • McGoldrick, L. F. (1972). On the rippling of small waves: A harmonic nonlinear nearly resonant interaction. Journal of Fluid Mechanics, 52, 725–751.

    MATH  Google Scholar 

  • McGoldrick, L. F., Phillips, O. M., Huang, N., & Hodgson, T. (1966). Measurements on resonant wave interactions. Journal of Fluid Mechanics, 25, 437–456.

    Google Scholar 

  • Miksad, R. W. (1972). Experiments on the nonlinear stages of free-shear-layer transition. Journal of Fluid Mechanics, 56, 695–719.

    Google Scholar 

  • Miles, J. W. (1963). On the stability of heterogeneous shear flows. Part 2. Journal of Fluid Mechanics, 16, 209–227.

    MathSciNet  MATH  Google Scholar 

  • Miles, J. W. (1984). Nonlinear Faradey resonance. Journal of Fluid Mechanics, 146, 285–302.

    MathSciNet  MATH  Google Scholar 

  • Miles, J. W. (1993). On Faraday waves. Journal of Fluid Mechanics, 248, 671–683.

    MathSciNet  MATH  Google Scholar 

  • Miles, J., & Henderson, D. (1990). Parametrically forced surface waves. Annual Review of Fluid Mechanics, 22, 143–165.

    MathSciNet  Google Scholar 

  • Monin, A. S., & Yaglom, A. M. (1971, 1975). Statistical fluid mechanics (Vols. 1 and 2). Cambridge: MIT Press.

    Google Scholar 

  • Morkovin, M. V. (1969). On the many faces of transition. In C. S. Wells (Ed.), Viscous drag reduction (pp. 1–31). London: Plenum.

    Google Scholar 

  • Morkovin, M. V., & Paranjape, S. V. (1971). On acoustic excitation of shear layers. Zs. Flugwiss, 19, 328–335.

    Google Scholar 

  • Morkovin, M. V., & Reshotko, E. (1990). Dialogue on progress and issues in stability and transition research. In D. Arnal & R. Michel (Eds.), Laminar-turbulent transition (pp. 3–29). Berlin: Springer.

    Google Scholar 

  • Moston, J., Stewart, P. A., & Cowley, S. J. (2000). On the linear growth of two-dimensional Tollmien-Schlichting waves in a flat-plate boundary layer. Journal of Fluid Mechanics, 425, 259–300.

    MathSciNet  MATH  Google Scholar 

  • Murdock, J. W. (1986). Three-dimensional numerical study of boundary-layer stability. AIAA Paper No. 86-0434.

    Google Scholar 

  • Nakaya, C. (1980). Three-dimensional waves in a boundary layer. In R. Eppler & H. Fasel (Eds.), Laminar-turbulent transition (pp. 239–242). Berlin: Springer.

    Google Scholar 

  • Nayfeh, A. H. (1971). Third harmonic resonance in the interaction of capillary and gravity waves. Journal of Fluid Mechanics, 48, 385–395.

    MathSciNet  MATH  Google Scholar 

  • Nayfeh, A. H. (1981). Introduction to perturbation techniques. New York: Wiley.

    MATH  Google Scholar 

  • Nayfeh, A. H. (1985). Three-dimensional spatial secondary instability in boundary-layer flows. AIAA Paper No. 85-1697.

    Google Scholar 

  • Nayfeh, A. H. (1987a). Nonlinear stability of boundary layers. AIAA Paper No. 87-0044.

    Google Scholar 

  • Nayfeh, A. H. (1987b). On secondary instabilities in boundary layers. In D. L. Dwoyer & M. Y. Hussaini (Eds.), Stability of time- dependent and spatially- varying flows (pp. 18–42). New York: Springer.

    Google Scholar 

  • Nayfeh, A. H., & Bozatli, A. N. (1979a). Secondary instability in boundary-layer flows. Physics of Fluids, 22, 805–813.

    MATH  Google Scholar 

  • Nayfeh, A. H., & Bozatli, A. N. (1979b). Nonlinear interaction of waves in boundary-layer flows. NASA Report CR-158239. Virginia Polytechnic Institute and State University Rep. VPI-E-79.6.

    Google Scholar 

  • Nayfeh, A. H., & Bozatli, A. N. (1979c). Nonlinear wave interactions in boundary layers. AIAA Paper No. 79-1456.

    Google Scholar 

  • Nayfeh, A. H., & Bozatli, A. N. (1980). Nonlinear interaction of two waves in boundary-layer flows. Physics of Fluids, 23, 448–458.

    MATH  Google Scholar 

  • Nayfeh, A. H., & Padhye, A. (1979). Relation between temporal and spatial stability of three-dimensional flows. AIAA Journal, 17, 1084–1090.

    MATH  Google Scholar 

  • Nelson, G., & Craik, A. D. D. (1977). Growth of streamwise vorticity in unstable boundary layers. Physics of Fluids, 20, 698–700.

    MATH  Google Scholar 

  • Nishioka, M., & Asai, M. (1985a). 3-D wave disturbances in plane Poiseuille flow. In V. V. Kozlov (Ed.), Laminar-turbulent transition (pp. 173–182). Berlin: Springer.

    Google Scholar 

  • Nishioka, M., & Asai, M. (1985b). Some observations of the subcritical transition in plane Poiseuille flow. Journal of Fluid Mechanics, 150, 441–450.

    Google Scholar 

  • Nishioka, M., & Morkovin, M. V. (1986). Boundary-layer receptivity to unsteady pressure gradients: Experiments and overview. Journal of Fluid Mechanics, 171, 219–261.

    Google Scholar 

  • Nishioka, M., Asai, M., & Iida, S. (1980). An experimental investigation of secondary instability. In R. Eppler & H. Fasel (Eds.), Laminar-turbulent transition (pp. 37–46). Berlin: Springer.

    Google Scholar 

  • Ono, H. (1975). Algebraic solitary waves in stratified fluids. Journal of the Physical Society of Japan, 39, 1082–1091.

    Google Scholar 

  • Orszag, S. A., & Patera, A. T. (1983). Secondary instability of wall-bounded shear flows. Journal of Fluid Mechanics, 128, 347–385.

    MATH  Google Scholar 

  • Perlin, M., Henderson, D. M., & Hammack, J. L. (1990). Experiments on ripple instabilities. Part 2. Selective amplification of resonant triads. Journal of Fluid Mechanics, 219, 51–80.

    Google Scholar 

  • Phillips, O. M. (1960). On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. Journal of Fluid Mechanics, 9, 193–217.

    MathSciNet  MATH  Google Scholar 

  • Phillips, O. M. (1961). On the dynamics of unsteady gravity waves of finite amplitude. Part 2. Local properties of a random wave field. Journal of Fluid Mechanics, 11, 143–155.

    MathSciNet  MATH  Google Scholar 

  • Phillips, O. M. (1966). On internal wave interactions. In R. D. Cooper & S. W. Doroff (Eds.), Proceedings of 6th symposium on naval hydrodynamics (pp. 535–549). Washington, D.C.: Office of Naval Research.

    Google Scholar 

  • Phillips, O. M. (1967). Theoretical and experimental studies of gravity wave interactions. Proceedings of the Royal Society of London, A 299, 104–119.

    Google Scholar 

  • Phillips, O. M. (1974a). Nonlinear dispersive waves. The Annual Review of Fluid Mechanics, 3, 93–110.

    Google Scholar 

  • Phillips, O. M. (1974b). Wave interactions. In S. Leibovich & A. E. Seebass (Eds.), Nonlinear waves (pp. 186–211). Ithaca: Cornell University Press.

    Google Scholar 

  • Phillips, O. M. (1977). The dynamics of the upper ocean (2nd ed). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Phillips, O. M. (1981). Wave interactions—the evolution of an idea. Journal of Fluid Mechanics, 106, 215–227.

    MATH  Google Scholar 

  • Rabinovich, M. I., & Trubetskov, D. I. (1989). Oscillations and waves in linear and nonlinear systems. Dordrecht: Kluwer. (This is a revised and augmented translation of the Russian book: An Introduction to the Theory of Oscillations and Waves, Nauka, Moscow, 1984).

    MATH  Google Scholar 

  • Raetz, G. S. (1959). A new theory of the cause of transition in fluid flows. Norair Report No NOR-59-383. California: Hawthorne.

    Google Scholar 

  • Raetz, G. S. (1964). Current status of resonance theory of transition. Norair Report No. NOR-64–111. California: Hawthorne.

    Google Scholar 

  • Rai, M. M., & Moin, P. (1993). Direct simulation of transition and turbulence in a spatially evolving boundary layer. Journal of Computational Physics, 109, 169–192.

    MATH  Google Scholar 

  • Ramazanov, M. P. (1985). Development of finite-amplitude disturbances in Poiseuille flow. In V. V. Kozlov (Ed.), Laminar-turbulent transition (pp. 191–198). Berlin: Springer.

    Google Scholar 

  • Rayleigh, L. (1883a). On maintained vibrations. Philosophical Magazine, 15(5), 229–235.

    Google Scholar 

  • Rayleigh, L. (1883b). On the crispations of fluid resting upon a vibrating support. Philosophical Magazine, 16(5), 50–58 (also in Scientific Papers, Vol. II, pp. 188–193 and 212–219, Cambridge: Cambridge University Press, 1900, and New York: Dover, 1945).

    Google Scholar 

  • Reddy, S. C., & Henningson, D. S. (1993). Energy growth in viscous channel flows. Journal of Fluid Mechanics, 252, 209–238.

    MathSciNet  MATH  Google Scholar 

  • Reddy, S. C., Schmid, P. J., Baggett, J. S., & Henningson, D. S. (1998). On stability of streamwise streaks and transition threshold in plane channel flows. Journal of Fluid Mechanics, 365, 269–303.

    MathSciNet  MATH  Google Scholar 

  • Reed, H. L. (1994). Direct numerical simulation of transition: The spatial approach. In AGARD Report No. 793, (pp. 6.1–6.46).

    Google Scholar 

  • Reshotko, E. (1976). Boundary-layer stability and transition. Annual Review of Fluid Mechanics, 8, 311–349.

    Google Scholar 

  • Reutov, V. P. (1985). The critical layer and nonlinear waves in the wall flows. In V. V. Kozlov (Ed.), Laminar-turbulent transition (pp. 81–86). Berlin: Springer.

    Google Scholar 

  • Reutov, V. P. (1990). A note on the mechanism of the resonant nonlinear instability in boundary layers. In A. V. Gaponov-Grekhov, M. I. Rabinovich, & J. Engelbrecht (Eds.), Nonlinear waves 3 (Proceedings of the Gorky School of 1989) (pp. 129–131). Berlin: Springer.

    Google Scholar 

  • Ripa, P. (1981). On the theory of nonlinear wave-wave interactions among geophysical waves. Journal of Fluid Mechanics, 103, 87–115.

    MathSciNet  MATH  Google Scholar 

  • Rist, U. (1990). Numerische Untersuchung der räumischen, dreidimensiionalen Strömungsentwicklung beim Grenzschichtumschlag, Dissertation, Stuttgart Universität, Germany.

    Google Scholar 

  • Rist, U. (1996). DNS of boundary-layer instability and transition using the spatial approach. In R. A. W. M. Henkes & J. L. van Ingen (Eds.), Transitional boundary layers in aeronautics (pp. 99–111). Amsterdam: North-Holland.

    Google Scholar 

  • Rist, U., & Fasel, H. (1995). Direct numerical simulation of controlled transition in a flat-plate boundary layer. Journal of Fluid Mechanics, 298, 211–248.

    MATH  Google Scholar 

  • Rist, U., & Kachanov, Yu. S. (1995). Numerical and experimental investigation of the K-regime of boundary layer transition. In R. Kobayashi (Ed.), Laminar-turbulent transition (pp. 405–412). Berlin: Springer.

    Google Scholar 

  • Robey, H. F. (1987). On the use of a phased heater array for the controlled excitation of arbitrary three-dimensional perturbations in a laminar boundary layer. Experiments in Fluids, 5, 33–35.

    Google Scholar 

  • Romanova, N. N. (1984). Long nonlinear waves in layers having large velocity gradients. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. i Okeana, 20, 468–475 (transl: Izvestiya, Atmospheric and Oceanic Physics, 20, 452–456).

    MathSciNet  Google Scholar 

  • Rothmayer, A. P., & Smith, F. T. (1987). Strongly nonlinear wavepackets in boundary layers. In K. N. Ghia (Ed.), Forum on unsteady flow separation (pp. 67–79, FED-Vol. 52). New York: American Society of Mechanical Engineers.

    Google Scholar 

  • Russell, J. M., & Landahl, M. T. (1984). The evolution of a flat eddy near a wall in an inviscid shear flow. Physics of Fluids, 27, 557–570.

    MATH  Google Scholar 

  • Ryzhov, O. S. (1990). The formation of ordered vortex structures from unstable oscillations in the boundary layer. Zhur. Vychesl. Matem. i Matem. Fiz., 30, 1804–1814 (transl: USSR Computational Mathematics and Mathematical Physics, 30, 6, 146–154).

    MathSciNet  Google Scholar 

  • Ryzhov, O. S. (1994). The development of nonlinear oscillations in a boundary layer and the onset of random disturbances. In S. P. Lin, W. R. C. Phillips, & D. T. Valentine (Eds.), Nonlinear instability of nonparallel flows (pp. 52–68). Berlin: Springer.

    Google Scholar 

  • Ryzhov, O. S., & Bogdanova-Ryzhova, E. V. (1998). Forced generation of solitary-like waves related to unstable boundary layers. Advances in Applied Mechanics, 34, 317–417.

    Google Scholar 

  • Sandham, N. D., Adams, N. A, & Kleiser, L. (1994). Direct simulation of breakdown to turbulence following oblique instability waves in a supersonic boundary layer. In P. R. Voke, L. Kleiser & J. P. Chollet (Eds.), Direct and large-eddy simulation 1 (pp. 213–223). Dordrecht: Kluwer.

    Google Scholar 

  • Santos, G. R., & Herbert, T. (1986). Combination resonance in boundary layers. Bulletin of the American Mathematical Society, 31, 1718.

    Google Scholar 

  • Saric, W. S., & Nayfeh, A. H. (1975). Nonparallel stability of boundary-layer flows. Physics of Fluids, 18, 945–950.

    MATH  Google Scholar 

  • Saric, W. S., & Reynolds, G. A. (1980). Experiments on the stability of nonlinear waves in a boundary layer. In R. Eppler & H. Fasel (Eds.), Laminar-turbulent transition (pp. 125–134). Berlin: Springer.

    Google Scholar 

  • Saric, W. S., & Thomas, A. S. W. (1984). Experiments on the subharmonic route to turbulence in boundary layers. In T. Tatsumi (Ed.), Turbulence and chaotic phenomena in fluids (pp. 117–122). Amsterdam: North-Holland.

    Google Scholar 

  • Saric, W. S., Carter, J. D., & Reynolds, G. A. (1981). Computation and visualisation of unstable-wave streaklines in a boundary layer. Bulletin of the American Physical Society, 26, 1252.

    Google Scholar 

  • Saric, W. S., Kozlov, V. V., & Levchenko, V. Ya. (1984). Forced and unforced subharmonic resonance in boundary-layer transition. AIAA Paper No. 84-0007.

    Google Scholar 

  • Sato, H. (1959). Further investigation on the transition of two-dimensional separated layer at subsonic speeds. Journal of the Physical Society of Japan, 14, 1797–1810.

    Google Scholar 

  • Schmid, P. J., & Henningson, D. S. (1992a). Channel flow transition induced by a pair of oblique waves. In M. Y. Hussaini, A. Kumar & C. L. Streett (Eds.), Instability, transition, and turbulence (pp. 356–366). New York: Springer.

    Google Scholar 

  • Schmid, P. J., & Henningson, D. S. (1992b). A new mechanism for rapid transition involving a pair of oblique waves. Physics of Fluids, A 4, 1986–1989.

    MathSciNet  Google Scholar 

  • Schmid, P. J., & Henningson, D. S. (2001). Stability and transitions in shear flows. Berlin: Springer.

    Google Scholar 

  • Schmid, P. J., Reddy, S. C., & Henningson, D. S. (1996). Transition thresholds in boundary-layer and channel flows. In S. Gavrilakis, L. Machiels & P. A. Monkewitz (Eds.), Advances in turbulence 6 (pp. 381–384). Dordrecht: Kluwer.

    Google Scholar 

  • Schubauer, G. B. (1958). Mechanism of transition at subsonic speeds. In H. Görtler (Ed.), Grenzschichtforschungboundary layer research (pp. 85–109). Berlin: Springer.

    Google Scholar 

  • Schubauer, G. B., & Klebanoff, P. S. (1956). Contribution on the mechanics of boundary-layer transition. NACA Report No. 1289.

    Google Scholar 

  • Schubauer, G. B., & Skramstad, H. K. (1947). Laminar boundary-layer oscillations and transition on a flat plate. Journal of research of the National Bureau of Standards, 38, 251–292 (also NACA Report No. 909, 1948).

    Google Scholar 

  • Schulze, T. P. (1999). A note on subharmonic instabilities. Physics of Fluids, 11, 3573–3575.

    MathSciNet  MATH  Google Scholar 

  • Shaikh, F. N., & Gaster, M. (1994). The non-linear evolution of modulated waves in a boundary layer. The Journal of Engineering Mathematics, 28, 55–71.

    Google Scholar 

  • Shrira, V. I. (1989). On near-surface waves in the upper, quasi-uniform layer of ocean. Doklady Akademii Nauk SSSR, 308, 732–736 (in Russian).

    Google Scholar 

  • Simmons, W. F. (1969). A variational method for weak resonant wave interactions. Proceedings of the Royal Society of London, A 309, 551–575.

    Google Scholar 

  • Smith, F. T. (1995). On spikes and spots: Strongly nonlinear theory and experimental comparisons. The Philosophical Transactions of the Royal Society in London, A 352, 405–424.

    MATH  Google Scholar 

  • Smith, F. T., & Burggraf, O. R. (1985). On the development of large-sized shorT-Scaled disturbances in boundary layers. Proceedings of Royal Society in London, A 399, 25–55.

    MATH  Google Scholar 

  • Smith, F. T., & Stewart, P. A. (1987). The resonant-triad nonlinear interaction in boundary-layer transition. Journal of Fluid Mechanics, 179, 227–252.

    MATH  Google Scholar 

  • Spalart, P. R., & Yang, K.-S. (1987). Numerical study of ribbon-induced transition in Blasius flow. Journal of Fluid Mechanics, 178, 345–365.

    Google Scholar 

  • Stuart, J. T. (1962a). Nonlinear effects in hydrodynamic stability. In F. Rolla & W. T. Koiter (Eds.), Proceedings of 10th international congress of applied mechanics (pp. 63–97). Amsterdam: Elsevier.

    Google Scholar 

  • Stuart, J. T. (1962b). On three-dimensional nonlinear effects in the stability of parallel flows.Advances in Aeronautical Science (Vol. 3, pp. 121–142). New York: Pergamon Press.

    Google Scholar 

  • Tang, Y.-P., & Chen, M.-Z. (1985). On the three-dimensional instability modes in boundary layers. AlAA Paper No. 85-1696.

    Google Scholar 

  • Tani, I. (1967). Review of some experimental results on boundary-layer transition. Physics of Fluids, 10, S11–S16.

    Google Scholar 

  • Tani, I. (1969). Boundary-layer transition. The Annual Review of Fluid Mechanics, 1, 169–196.

    Google Scholar 

  • Thomas, A. S. W. (1987). Experiments on secondary instabilities in boundary layers. In J. P. Lamb (Ed.), Proceedings of 10th U.S. national congress of applied mechanics. (pp. 435–443). New York: American Society of Mechanical Engineerss.

    Google Scholar 

  • Thomas, A. S. W., & Saric, W. S. (1981). Harmonic and subharmonic waves during boundary layer transition. Bulletin of the American Physical Society, 26, 1252.

    Google Scholar 

  • Thumm, A., Wolz, W., & Fasel, H. (1989). Numerical simulation of Tollmien-Schlichting waves in compressible transonic boundary layers on plates. Zs. angew. Math. Mech., 69, 598–600.

    Google Scholar 

  • Thumm, A., Wolz, W., & Fasel, H. (1990). Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers. In D. Arnal & R. Michel (Eds.), Laminar-turbulent transition (pp. 303–308). Berlin: Springer.

    Google Scholar 

  • Tietjens, O. (1925). Beitrage zur Entstehung der Turbulenz. Zs. angew. Math. Mech., 5, 200–217.

    MATH  Google Scholar 

  • Trulsen, K., & Mei, C. C. (1996). A resonating triad of gravity-capillary waves on a long gravity wave. In J. Grue, B. Gjevik, & J. E. Weber (Eds.), Waves and nonlinear processes in hydrodynamics (pp. 165–176). Dordrecht: Kluwer.

    Google Scholar 

  • Tso, J., Chang, S.-I., & Blackwelder, F. (1990). On the breakdown of a wave packet disturbance in a laminar boundary layer. In D. Arnal & R Michel (Eds.), Laminar-turbulent transition (pp 199–214). Berlin: Springer.

    Google Scholar 

  • Turner, J. G., & Boyd, T. J. M. (1978). Three- and four-wave interactions in plasmas. Journal of Mathematical Physics, 19, 1403–1413.

    Google Scholar 

  • Usher, J. R, & Craik, A. D. D. (1974). Nonlinear wave interactions in shear flows. Part 1. A variational formulation. Journal of Fluid Mechanics, 66, 209–221.

    MATH  Google Scholar 

  • Usher, J. R, & Craik, A. D. D. (1975). Nonlinear wave interactions in shear flows. Part 2. Third-order theory. Journal of Fluid Mechanics, 70, 437–461.

    MATH  Google Scholar 

  • Ustinov, M. V. (1993). Investigation of subharmonic transition in a plane channel by direct numerical simulation. Izv. Ross. Akad. Nauk, Ser. Mekh. Zhidk. i Gaza, 3, 46–53 (transl: Fluid Dynamics, 28, 332–337).

    Google Scholar 

  • Ustinov, M. V. (1994). Possibility of describing the nonlinear stage of subharmonic transition within the framework of amplitude equations. Izv. Ross. Akad. Nauk, Ser. Mekh. Zhidk. i Gaza, 6, 34–39 (transl: Fluid Dynamics, 29, 765–769).

    MathSciNet  Google Scholar 

  • Van Hest, B. F. A. (1996). Laminar-turbulent transition in boundary layers with adverse pressure gradients. Ph. D. Dissertation, Delft, the Netherlands: Delft University of Technology.

    Google Scholar 

  • Van Hest, B. F. A., Groenen, H. F., & Passchier, D. M. (1996). Nonlinear development and breakdown of TS-waves in an adverse pressure gradient boundary layer. In R. A. W. M. Henkes & J. L. van Ingen (Eds.), Transitional boundary layers in aeronautics (pp. 71–79). Amsterdam: North-Holland.

    Google Scholar 

  • Volodin, A. G., & Zel’man (Zelman), M. B. (1977). Pairwise nonlinear interactions of Tollmien-Schlichting waves in flows of the boundary-layer type. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 2, 33–37 (transl: Fluid Dynamics, 12, 192–196).

    Google Scholar 

  • Volodin, A. G., & Zel’man (Zelman), M. B. (1978). Three-wave resonance interaction of disturbances in a boundary layer. Izv. Akad, Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 5, 78–84 (transl: Fluid Dynamics, 13, 698–703).

    Google Scholar 

  • Waleffe, F. (1995). Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process. Studies in Applied Mathematics, 95, 319–343.

    MathSciNet  MATH  Google Scholar 

  • Wang, D., & Zhao, G. (1992). On secondary instability with respect to three-dimensional subharmonic disturbances in boundary layer. Acta Mechanica Sinica, 8, 231–236.

    MATH  Google Scholar 

  • Wehrmann, O., & Wille, R. (1958). Beitrag zur Phänomenologie des laminar-turbulenten Übergangs im Freistrahl bei kleinen Reynoldszahlen. In H. Görtler (Ed.), Grenzschichtforschungboundary layer research (pp. 387–404). Berlin: Springer.

    Google Scholar 

  • Weiland, J., & Wilhelmsson, H. (1977). Coherent nonlinear interaction of waves in plasmas. Oxford: Pergamon.

    Google Scholar 

  • Wiegel, M. (1996). Experimentelle Untersuchung von kontrolliert angeregten dreidimensionalen Wellen in einer Btasius-Grenzschicht. Doktoral Dissertation, Der Fakultät für Maschinenwesen, University Hannover (published in VDI-Fortschrittsberichte, Reihe 7, Nr. 312, VDI-Verlag, Düsseldorf, 1997).

    Google Scholar 

  • Wray, A., & Hussaini, M. Y. (1984). Numerical experiments in boundary-layer stability. Proceedings of the Royal Society of London, A 392, 373–389.

    MATH  Google Scholar 

  • Wright, J., Yon, S., & Pozrikidis, C. (2000). Numerical studies of two-dimensional Faraday oscillations of inviscid fluids. Journal of Fluid Mechanics, 402, 1–32.

    MathSciNet  MATH  Google Scholar 

  • Wu, X. (1993). On critical-layer and diffusion-layer nonlinearity in the three-dimensional stage of boundary-layer transition. Proceedings of the Royal Society of London, A 433, 95–106.

    Google Scholar 

  • Wu, X. (1995). Viscous effects on fully coupled resonant-triad interactions: An analytical approach. Journal of Fluid Mechanics, 292, 377–407.

    MathSciNet  MATH  Google Scholar 

  • Wu, X. (1996). On an active resonant triad of mixed modes in symmetric shear flaws: A plane wake as a paradigm. Journal of Fluid Mechanics, 317, 337–368.

    MathSciNet  MATH  Google Scholar 

  • Wu, X., Lee, S. S., & Cowley, S. J. (1993). On the weakly nonlinear three-dimensional instability of shear flows to pair of oblique waves: The Stokes layer as a paradigm. Journal of Fluid Mechanics, 253, 681–721.

    MathSciNet  MATH  Google Scholar 

  • Wu, X., & Stewart, P. A. (1995). Interaction of phase-locked modes: A new mechanism for the rapid growth of three-dimensional disturbances. In R. Kobayashi (Ed.), Laminar-turbulent transition (pp. 45–52). Berlin: Springer.

    Google Scholar 

  • Wubben, F. J. M., Passchier, D. M., & Van Ingen, J. L. (1990). Experimental investigation of Tollmien-Schlichting instability and transition in similar boundary layer flow in an adverse pressure gradient. In D. Arnal & R. Michel (Eds.), Laminar-turbulent transition (pp. 31–42). Berlin: Springer.

    Google Scholar 

  • Yan, D., Zhu, Q., Yu, D., Niu, Z., Sun, W., Tong, C., & Jiang, M. (1988). Resonant interactions of Tollmien-Schlichting waves in the boundary layer on a flat plate. Acta Mechanica Sinica, 4, 305–310.

    Google Scholar 

  • Yuen, H. C., & Lake, B. M. (1982). Nonlinear dynamics of deep-water gravity waves. Advances in Applied Mechanics, 22, 67–229.

    MathSciNet  MATH  Google Scholar 

  • Zabusky, N. J., & Kruskal, M. D. (1965). Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Physical Review Letters, 15, 240–243.

    MATH  Google Scholar 

  • Zang, T. A. (1992). Aspects of laminar breakdown in boundary-layer transition. In M. Y. Hussaini, A. Kumar, & C. L. Streett (Eds.), Instability, transition, and turbulence (pp. 377–387). New York: Springer.

    Google Scholar 

  • Zang, T. A., & Hussaini, M. Y. (1985). Numerical experiments on the stability of controlled shear flows. AIAA Paper No. 85-1698.

    Google Scholar 

  • Zang, T. A., & Hussaini, M. Y. (1987). Numerical simulation of nonlinear interactions in channel and boundary-layer transition. In R. W. Miksad, T. R. Akylas, & T. Herbert (Eds.), Nonlinear wave interactions in fluids (pp. 131–145, AMD-Vol. 87). New York: American Society of Mechanical Engineers.

    Google Scholar 

  • Zang, T. A., & Hussaini, M. Y. (1990). Multiple paths to subharmonic laminar breakdown in a boundary layer. Physical Review Letters, 64, 641–644.

    Google Scholar 

  • Zel’man (Zelman), M. B. (1974). On nonlinear development of disturbances in plane-parallel flows. Izv. Sib. Otdel. Akad. Nauk SSSR, Ser. Tekh. Nauk (Bull. Siberian Div. Acad. Sci. USSR, Ser. Eng. Sci.), 13(3), 16–21 (in Russian).

    Google Scholar 

  • Zel’man (Zelman), M. B. (1991). On the weakly nonlinear evolution of spatially localized disturbances in a nonparallel boundary layer. Russian Journal of Theoretical and Applied Mechanics, 1, 195–198.

    Google Scholar 

  • Zel’man (Zelman), M. B., & Kakotkin, A. F. (1982). On the weakly nonlinear stability of nonparallel boundary layers. Chisl. Met. Mekh. Spl. Sred (Num. Meth. Mech. Contin. Media), 13(3) (in Russian).

    Google Scholar 

  • Zel’man (Zelman), M. B., & Kakotkin, A. F. (1985). Space-time development of perturbations in the boundary layer. Prikl. Mekh. Tekh. Fiz., 1, 42–47 (transl: Journal of Applied Mechanics and Technical Physics, 26, 36–41).

    Google Scholar 

  • Zel’man (Zelman), M. B., & Maslennikova, I. I. (1984). On effects of resonant interactions between wave perturbations in a boundary layer. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 4, 24–30 (transl: Fluid Dynamics, 19, 532–538).

    Google Scholar 

  • Zel’man (Zelman), M. B., & Maslennikova, I. I. (1985). Resonant interaction of spatial disturbances in a boundary layer. Prikl. Mekh. i Tekh. Fiz., 3, 86–90 (transl: Journal of Applied Mechanics and Technical Physics, 26, 378–381).

    Google Scholar 

  • Zel’man (Zelman), M. B., & Maslennikova, I. I. (1989). Formation of the three-dimensional structure in the subharmonic transition regime in Blasius flow. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i Gaza, 3, 77–81 (transl: Fluid Dynamics 23, 390–393).

    Google Scholar 

  • Zel’man (Zelman), M. B., & Maslennikova, I. I. (1990). On the spatial structure of disturbances in boundary-layer subharmonic transition. In D. Arnal & R. Michel, (Eds.), Laminar-turbulent transiton (pp. 137–142). Berlin: Springer.

    Google Scholar 

  • Zel’man (Zelman), M. B., & Maslennikova, I. I. (1992). Subharmonic-transition spectrum generation in boundary layers. Prikl. Mekh. i Tekh. Fiz., 2, 58–62 (transl: Journal of Applied Mechanics and Technical Physics, 33, 197–201).

    Google Scholar 

  • Zel’man (Zelman), M. B., & Maslennikova, I. I. (1993a). Tollmien-Schlichting-wave resonant mechanism for subharmonic-type transition. Journal of Fluid Mechanics, 252, 449–478.

    Google Scholar 

  • Zel’man (Zelman), M. B., & Maslennikova, I. I. (1993b). Subharmonic transition spectra generation and transition prediction in boundary layers. European Journal of Mechanics B/Fluids, 12, 161–174.

    Google Scholar 

  • Zel’man (Zelman), M. B., & Smorodsky, B. V. (1990). On the wave packets interaction in a transitional boundary layer. In D. Arnal & R. Michel (Eds.), Laminar-turbulent transition (pp. 285–290). Berlin: Springer.

    Google Scholar 

  • Zel’man (Zelman), M. B., & Smorodsky, B. V. (1991a). Linear evolution of perturbations in boundary layers with a velocity profile inflection. Prikl. Mekh. i Tech. Fiz., 1, 50–55 (transl: Journal of Applied Mechanics and Technical Physics, 32, 46–51).

    Google Scholar 

  • Zel’man (Zelman), M. B., & Smorodsky, B. V. (1991b). Effect of an inflection in the profile of mean velocity on the resonance interaction of perturbations in a boundary layer. Prikl. Mekh. i Tekh. Fiz., 2, 61–66 (transl: Journal of Applied Mechanics and Technical Physics, 32, 200–204).

    Google Scholar 

  • Zhuk, V. I., & Popov, S. P. (1989). On the solutions of the inhomogeneous Benjamin–Ono equation. Zhur. Vychisl. Matem. i Matem. Fiz., 29, 1852–1862 (transl: Computational Mathematics and Mathematical Physics, 29(6), 176–183).

    MathSciNet  Google Scholar 

  • Zhuk, V. I., & Ryzhov, O. S. (1982). Locally nonviscous perturbations in a boundary layer with self-induced pressure. Doklady Akademii Nauk SSSR, 263, 56–59 (transl: Soviet Physics Doklady, 27, 177–179).

    MathSciNet  Google Scholar 

Download references

Acknowledgments

Exactly as in the case of all previous chapters, this chapter could not have been accomplished without much help given to me by a number of individuals and institutions. And again I must first of all express here my deep gratitude to the Massachusetts Institute of Technology (MIT) in whose Department of Aeronautics and Astronautics the work on this chapter was carried out; the assistance of the Department Head, Prof. E. F. Crawley, in providing me with all necessities for this work must be especially noted. The Center for Turbulence Research (CTR) at Stanford University and NASAAmes Research Center (Director Prof. P. Moin) on its own initiative arranged the publication of the separate chapters of this work as CTR Monographs; moreover, CTR provided a substantial part of the financial support for my work. The other part of the support was given by MIT alumnus Dr. J. W. Poduska, Sr. and his family, who donated a special sum to MIT as a gift intended for supporting the preparation of my book. I feel myself obliged to express here my deep gratitude to CTR and Dr. Poduska's family.

As in the case of previous chapters I am particularly indebted to Prof. P. Bradshaw of Stanford University, who again read the manuscript of the chapter with great care, corrected the defects of my English and made important suggestions relating to the presentation of some topics in this chapter. I am also very grateful to many colleagues who made some useful remarks and/or sent useful written material on the boundary-layer instability. In particular, P. Schmid sent me an incomplete text of the interesting book by Schmid and Henningson (2001) much before the manuscript was wholly prepared and sent to the publisher, and he also helped me with the preparation of some figures from the mentioned book for reproduction in Chap. 5 below. Moreover, V.V. Kozlov sent me a copy of the recent Russian book by Boiko et al. (1999) which was difficult to get in the USA, while F.H. Busse pointed out a number of misprints in Chap. 4 and noted that results given in some papers cited in Chap. 4 contain an error, corrected in the recent paper by Kaiser and Xu (1998). I also received valuable remarks and written materials from K.S. Breuer, S. Grossmann, M.V. Morkovin, E. Reshotko and many others. Ms. Debra Spinks and Ms. Deborah Michael of CTR again helped me with a number of administrative matters and problems related to arranging and implementation of the present publication, and Ms. Jenny Pelka helped with the preparation of manuscript and figures for publication (many figures were sent by me only in a draft-quality form). Ms. Eileen Dorschner, Aeronautics and Astronautics librarian at MIT libraries, helped me to define more precisely all the data needed for the Bibliography at the end of this chapter. To all the persons and organizations who gave help to me I express here my sincere thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uriel Frisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yaglom, A., Frisch, U. (2012). Further Weakly-Nonlinear Approaches to Laminar-Flow Stability: Blasius Boundary-Layer Flow as a Paradigm. In: Frisch, U. (eds) Hydrodynamic Instability and Transition to Turbulence. Fluid Mechanics and Its Applications, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4237-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4237-6_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4236-9

  • Online ISBN: 978-94-007-4237-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics