Skip to main content

Developing a Framework for Assessing Coastal Vulnerability to Sea Level Rise in Southern New England, USA

  • Conference paper
  • First Online:
Resilient Cities 2

Part of the book series: Local Sustainability ((LOCAL,volume 2))

Abstract

Scientists predict that sea level rise will intensify wetland loss, saltwater intrusion, and the problems caused by waves, storm surges, and shoreline erosion (Nicholls et al., Trans R Soc 369:161–181, 2011). The ability to accurately identify low-lying lands is critical for assessing the vulnerability of coastal regions. To do this, coastal managers need elevation data and other coastal zone information, but these data are not always available at resolutions appropriate for making state and regional governance decisions on climate change and adaptation. Coastal Resilience (Ferdaña et al., Adapting to climate change: building interactive decision support to meet management objectives for coastal conservation and hazard mitigation on long island, New York, USA. In: Andrade Pérez A, Herrera Fernandez B, Cazzolla Gatti R (eds) Building resilience to climate change: ecosystem-based adaptation and lessons from the field. IUCN, Gland, 164 pp, 2010) is an ecosystem-based planning framework and web mapping application that visually displays ecological, socio-economic, and coastal hazards information to examine different adaptation solutions. This technical study highlights the limitations and opportunities of mapping sea level rise in Southern New England, USA, in order to evaluate coastal vulnerability and therefore appropriate adaptation strategies. We compared the accuracy of digital elevation data between a nationwide data set with a seamless, multi-state data set that incorporated local high-resolution data. Based on an independent accuracy assessment, the integrated elevation data approach using local- and regional-scale data was 55% (or 1.25 ft) more accurate than the national elevation data set alone. Results of this work indicate that regional elevation data sets are less accurate in determining different sea level rise scenarios than when integrating best-available local elevation data sets with regional data sets. With this approach, we can better assess the impacts of climate change to vulnerable low-lying lands and help communities identify adaptation plans that protect vulnerable coastal communities and ecosystems, allow for natural resource migration, and reduce socio-economic risk to coastal hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • EPA Long Island Sound Study. (2007). Public perception survey of Long Island Sound watershed residents. New York: Stony Brook University.

    Google Scholar 

  • Federal Geographic Data Committee. (1998). Geospatial positioning accuracy standards part 3: National standard for spatial data accuracy. Subcommittee for Base Cartographic Data. http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3

  • Ferdaña, Z. A., Newkirk, S., Whelchel, A., Gilmer, B., & Beck, M. W. (2010). Adapting to climate change: Building interactive decision support to meet management objectives for coastal conservation and hazard mitigation on Long Island, New York, USA. In A. Andrade Pérez, B. Herrera Fernandez, & R. Cazzolla Gatti (Eds.), Building resilience to climate change: Ecosystem-based adaptation and lessons from the field (164 pp). Gland: IUCN. http://data.iucn.org/dbtw-wpd/edocs/2010-050.pdf

  • Gesch, D. B. (2007). The National Elevation Dataset. In D. Maune (Ed.), Digital elevation model technologies and applications: The DEM users manual (2nd ed., pp. 99–118). Bethesda: American Society for Photogrammetry and Remote Sensing.

    Google Scholar 

  • Gesch, D. B. (2009). Analysis of Lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. Journal of Coastal Research, 53, 49–58.

    Article  Google Scholar 

  • Gesch, D. B., & Wilson, R. (2002). Development of a seamless multisource topographic/ bathymetric elevation model of Tampa Bay. Marine Technology Society Journal, 35, 58–64.

    Article  Google Scholar 

  • Gesch, D. B., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., & Tyler, D. (2002). The National Elevation Dataset. Photogrammetric Engineering and Remote Sensing, 68, 5–11.

    Google Scholar 

  • Gesch, D. B., Gutierrez, B. T., & Gill, S. K. (2009). Coastal elevations. In Coastal sensitivity to sea-level rise: A focus on the Mid-Atlantic region. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Titus, J. G. (coordinating lead author), Anderson, K. E, Cahoon, D. R., Gesch, D. B., Gill, S. K., Gutierrez, B. T., Thieler, E. R., Williams, S. J.(lead authors)]. Washington DC: U.S. Environmental Protection Agency, pp. 25–42.

    Google Scholar 

  • Hu, A., Meehl, G. A., Han, W., & Yin, J. (2009). Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophysical Research Letters, 36, L10707. 6 p.

    Article  Google Scholar 

  • IPCC [Intergovernmental Panel on Climate Change]. (2008). Climate change 2007: Synthesis report. Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Kleinosky, L. R., Yarnal, B., & Fisher, A. (2007). Vulnerability of Hampton Roads, Virginia to storm-surge flooding and sea-level rise. Natural Hazards, 40, 43–70.

    Article  Google Scholar 

  • Maune, D. F., Maitra, J. B., & McKay, E. J. (2007). Accuracy standards and guidelines. In D. F. Maune (Ed.), Digital elevation model technologies and applications: The DEM users manual (2nd ed., pp. 65–97). Bethesda: American Society for Photogrammetry and Remote Sensing.

    Google Scholar 

  • Najjar, R. G., Walker, H. A., Anderson, P. J., Barron, E. J., Bord, R. J., Gibson, J. R., Kennedy, V. S., Knight, C. G., Megonigal, J. P., O’Connor, R. E., Polsky, C. D., Psuty, N. P., Richards, B. A., Sorenson, L. G., Steele, E. M., & Swanson, R. S. (2000). The potential impacts of climate change on the mid-Atlantic coastal region. Climate Research, 14, 219–233.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center. (2009). Coastal inundation mapping guidebook. Charleston, SC, USA. http://www.csc.noaa.gov/digitalcoast/inundation/_pdf/guidebook.pdf

  • Nicholls, R. J., Marinova, N., Lowe, J. A., Brown, S., Vellinga, P., de Gusmão, D., Hinkel, J., & Tol, R. S. J. (2011). Sea-level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Transactions of the Royal Society, 369, 161–181.

    Google Scholar 

  • Pfeffer, W. T., Harper, J. T., & O’Neel, S. (2008). Kinematic constraints on Glacier contributions to 21st century sea-level rise. Science, 321, 1340–1343.

    Article  CAS  Google Scholar 

  • Poulter, B., & Halpin, P. N. (2008). Raster modeling of coastal flooding from sea-level rise. International Journal of Geographical Information Science, 22(2), 167–182.

    Article  Google Scholar 

  • The Nature Conservancy (TNC). (2011). Coastal resilience: Adapting natural and human communities to sea level rise and coastal hazards. www.coastalresilience.org

  • Titus, J.G., & Wang, J. (2008). Maps of lands close to sea level along the Middle Atlantic Coast of the United States: An elevation data set to use while waiting for LiDAR. Section 1.1. In J. G. Titus & E. M. Strange (Eds.), Background documents supporting climate change science program synthesis and assessment product 4.1, EPA 430R07004. Washington, DC: U.S. EPA.

    Google Scholar 

  • Titus, J. G., Hudgens, D. E., Trescott, D. L., Craghan, M., Nuckols, W. H., Herschner, C. H., Kassakian, J. M., Linn, C. J., Merritt, P. G., McCue, T. M., O’Connell, J. F., Tanski, J., & Wang, J. (2009). State and local governments plan for development of most land vulnerable to rising sea level along the U.S. Atlantic coast. Environmental Research Letters, 4, 1–7.

    Article  Google Scholar 

  • Vermeer, M., & Rahmstorf, S. (2009). Global sea level linked to global temperature. Proceedings of the National Academy of Sciences of the United States of America, 106, 21527–21532.

    Article  CAS  Google Scholar 

  • Weiss, J. L., Overpeck, J. T., & Strauss, B. (2011). Implications of recent sea level rise science for low-elevation areas in coastal cities of the conterminous U.S.A. Climatic Change, 105, 635–645.

    Article  Google Scholar 

  • Yin, J., Schlesinger, M. E., & Stouffer, R. J. (2009). Model projections of rapid sea-level rise on the Northeast Coast of the United States. Nature Geoscience. doi:10:10.1038/NGEO462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Gilmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gilmer, B., Ferdaña, Z. (2012). Developing a Framework for Assessing Coastal Vulnerability to Sea Level Rise in Southern New England, USA. In: Otto-Zimmermann, K. (eds) Resilient Cities 2. Local Sustainability, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4223-9_4

Download citation

Publish with us

Policies and ethics