Skip to main content

Coupling of Growth, Differentiation and Morphogenesis: An Integrated Approach to Design in Embryogenesis

  • Chapter
  • First Online:
Origin(s) of Design in Nature

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 23))

Abstract

There is increasing evidence that cellular differentiation is induced by mechanical stresses, either shear (dislocation of haemangioblasts into erythrocytes and endothelial cells, arterial vs. venous phenotype), compressive stress (gastrulation, cartilage formation) or tensile stress (plant budding). This also includes the important case of apoptosis, which may be induced by mechanical forces (finger webbing or non-webbing in response to ectodermal tension). If differentiation is induced by components of the stress tensor, it might become possible to boil down morphogenesis to a closed biomechanical equation incorporating growth, morphogenesis and differentiation, encapsulated in a single framework. In order to progress towards such closed models, or discover their inadequacies, four important questions need to be answered. First, exactly what is the mechanical nature of living material (constitutive equation); second, what forces drive the deformation rates in the mechanical field (movement, growth or both); third, how cellular differentiation is spatially organized in vivo by mechanical singularities (where and how are the first spots of differentiation localized) and fourth, how differentiation spreads. We address here the first issue by in vivo air-puff tonometry, which shows that early, differentiated embryonic tissue behaves like a simple viscoelastic material. This allows us to propose two simple models of localized differentiation. In the first one, differentiation is initiated at singularities of vector fields during in-plane collective cell migration. In the second one, out-of-plane folding is induced by self-organized viscoelastic buckling. This self-organized buckling induces furrows of high stress in which differentiation is induced by mechanotransduction of the stress-provoking cell differentiation in the interstitium. We discuss whether such singularities and geometries can be related to the launching, propagation and termination of observed differentiation waves, which are propagating deformations, perhaps correlating with our conclusion that undeformed living material will not undergo morphogenesis, neither differentiation. Specific examples are addressed (gastrulation, eye formation, heart looping, tissue buckling). A framework is thus provided for explaining the whole spatiotemporal course of embryogenesis, and thus the basis for the design of organisms.

An erratum to this chapter can be found at 10.1007/978-94-007-4156-0_44

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JF (1962) Vector fields on spheres. Ann Math 75(3):603–632

    Article  MathSciNet  MATH  Google Scholar 

  • Agero U, Glazier JA, Hosek M (2010) Bulk elastic properties of chicken embryos during somitogenesis. Biomed Eng Online 9:19. doi:10.1186/1475-925X-9-19

    Article  Google Scholar 

  • Alexander TB, Krumlauf R (2001) Mammalian embryo: Hox genes. In: Encyclopedia of life sciences. Wiley, New York. http://dx.doi.org/10.1002/9780470015902.a0000740.pub2

  • Allena R, Mouronval AS, Aubry D (2010) Simulation of multiple morphogenetic movements in the Drosophila embryo by a single 3D finite element model. J Mech Behav Biomed Mater 3(4):313–323

    Article  Google Scholar 

  • Anonymous (2010) Eye development (movie). http://www.youtube.com/watch?v=Xme8PA6xv-M

  • Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995) The ontogeny of human gyrification. Cereb Cortex 5(1):56–63

    Article  Google Scholar 

  • Asher RJ, Lin KH, Kardjilov N, Hautier L (2011) Variability and constraint in the mammalian vertebral column. J Evol Biol 24(5):1080–1090

    Article  Google Scholar 

  • Austman R (2004) Development of an apparatus and method for testing the viscoelastic properties of axolotl embryos as an animal model for congenital lordosis. Undergraduate thesis, Supervisors: Gordon R, Cenkowski S. Department of Biosystems Engineering, University of Manitoba, Winnipeg

    Google Scholar 

  • Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BLM (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124(23):4867–4878

    Google Scholar 

  • Beloussov LV (1998) The dynamic architecture of a developing organism: an interdisciplinary approach to the development of organisms. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Beloussov LV (2001) Morphogenetic fields: outlining the alternatives and enlarging the context. Rivista di Biologia/Biology Forum 94(2):219–235

    Google Scholar 

  • Beloussov LV, Luchinskaya NN, Ermakov AS, Glagoleva NS (2006) Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int J Dev Biol 50(2/3):113–122

    Article  Google Scholar 

  • Beysens D, Forgacs G, Glazier JA (2000) Embryonic tissues are viscoelastic materials. Can J Phys 78:243–251

    Article  Google Scholar 

  • Björklund NK, Gordon R (1993) Nuclear state splitting: a working model for the mechanochemical coupling of differentiation waves to master genes. Russ J Dev Biol 24(2):79–95

    Google Scholar 

  • Björklund NK, Gordon R (1994) Surface contraction and expansion waves correlated with differentiation in axolotl embryos. I. Prolegomenon and differentiation during the plunge through the blastopore, as shown by the fate map. Comput Chem 18(3):333–345

    Article  Google Scholar 

  • Björklund NK, Gordon R, Martin CC (1991) Defects due to compression of amphibian embryos at primary neural induction. In: Gordon R (ed) Symposium, mechanics of the cytoskeleton in developmental biology, sponsored by the Canadian Society for Theoretical Biology, 34th annual meeting, Canadian Federation of Biological Societies, Program/Proceedings, Queen’s University, Kingston, ON, 9–11 June 1991. Canadian Federation of Biological Societies, Ottawa, p 118

    Google Scholar 

  • Blader P, Strahle U (1998) Ethanol impairs migration of the prechordal plate in the zebrafish embryo. Dev Biol 201(2):185–201

    Article  Google Scholar 

  • Blankenship JT, Backovic ST, Sanny JS, Weitz O, Zallen JA (2006) Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell 11(4):459–470

    Article  Google Scholar 

  • Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217

    Article  Google Scholar 

  • Bloom F, Coffin D (2000) Handbook of thin plate buckling & postbuckling. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Boryskina OP, Al-Kilani A, Fleury V (2011) Limb positioning and shear flows in tetrapods. Eur Phys J Appl Phys 55(2)

    Google Scholar 

  • Boudaoud A, Chaieb S (2001) Singular thin viscous sheet. Phys Rev E 64(5):050601

    Article  Google Scholar 

  • Boulbitch A (2000) Deformation of the envelope of a spherical Gram-negative bacterium during the atomic force measurements. J Electron Microscopy 49(3):459–462

    Article  Google Scholar 

  • Brodland GW (2006) Do lamellipodia have the mechanical capacity to drive convergent extension? Int J Dev Biol 50(2/3):151–155

    Article  Google Scholar 

  • Brodland GW, Gordon R, Scott MJ, Björklund NK, Luchka KB, Martin CC, Matuga C, Globus M, Vethamany-Globus S, Shu D (1994) Furrowing surface contraction wave coincident with primary neural induction in amphibian embryos. J Morphol 219(2):131–142

    Article  Google Scholar 

  • Brouwer LEJ (1910) Über eineindeutige, stetige Transformationen von Flächen in sich. Math Ann 69:176–180

    Article  MathSciNet  MATH  Google Scholar 

  • Brundin L, Russell I (1994) Tuned phasic and tonic motile responses of isolated outer hair cells to direct mechanical stimulation of the cell body. Hear Res 73(1):35–45

    Article  Google Scholar 

  • Bryan J, Chambers G, Fowles K (1994) The miracle of birth. Random House Value Publishing, Westminster

    Google Scholar 

  • Cheddadi I, Saramito P, Dollet B, Raufaste C, Graner F (2011) Understanding and predicting viscous, elastic, plastic flows. Eur Phys J E Soft Matter 34(1):1–15

    Article  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1):39–48

    Article  Google Scholar 

  • Chuai M, Weijer CJ (2009) Who moves whom during primitive streak formation in the chick embryo. HFSP J 3(2):71–76

    Article  Google Scholar 

  • Cummins H (1926) Epidermal-ridge configurations in developmental defects, with particular reference to the ontogenetic factors which condition ridge direction. Am J Anat 38:89–151

    Article  Google Scholar 

  • Cursiefen C, Chen L, Saint-Geniez M, Hamrah P, Jin Y, Rashid S, Pytowski B, Persaud K, Wu Y, Streilein JW, Dana R (2006) Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci USA 103(30):11405–11410

    Article  Google Scholar 

  • Damon BJ, Mezentseva NV, Kumaratilake JS, Forgacs G, Newman SA (2008) Limb bud and flank mesoderm have distinct “physical phenotypes” that may contribute to limb budding. Dev Biol 321(2):319–330

    Article  Google Scholar 

  • Danilchik MV, Brown EE, Riegert K (2006) Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry? Development 133(22):4517–4526

    Article  Google Scholar 

  • Davidson EH (1993) Later embryogenesis: regulatory circuitry in morphogenetic fields. Development 118(3):665–690

    Google Scholar 

  • Davies JA (2006) Branching morphogenesis. Landes Bioscience/Eurekah.com, Austin

    Google Scholar 

  • Depew MJ, Simpson CA, Morasso M, Rubenstein JL (2005) Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat 207(5):501–561

    Article  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  Google Scholar 

  • Dormer KJ (1980) Fundamental tissue geometry for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V (2007) Holoprosencephaly. Orphanet J Rare Dis 2(8). doi:10.1186/1750-1172-1182-1188

  • Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, Chen X, Roberts CJ, Stevens MM (2009) Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater 18:1–14

    Google Scholar 

  • Fankhauser G, Vernon JA, Frank WH, Slack WV (1955) Effect of size and number of brain cells on learning in larvae of the salamander, Triturus viridescens. Science 122(3172):692–693

    Article  Google Scholar 

  • Farge E (2003) Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13(16):1365–1377

    Article  Google Scholar 

  • Fleury V (1997) Branched fractal patterns in non-equilibrium electrochemical deposition from oscillatory nucleation and growth. Nature 390(6656):145–148

    Article  Google Scholar 

  • Fleury V (2005) An elasto-plastic model of avian gastrulation. Organogenesis 2(1):6–16

    Article  MathSciNet  Google Scholar 

  • Fleury V (2009) Clarifying tetrapod embryogenesis, a physicist’s point of view. Eur Phys J Appl Phys 45(3):54, Article 30101

    Article  Google Scholar 

  • Fleury V (2011) Dynamic topology of the cephalochordate to amniote morphological transition: a self-organized system of Russian dolls. Comptes Rendus Biol 334(2):91–99

    Article  Google Scholar 

  • Fleury V, Al-Kilani A, Boryskina OP, Cornelissen AJM, Nguyen T-H, Unbekandt M, Leroy L, Baffet G, Lenoble F, Sire O, Lahaye E, Burgaud V (2010) Introducing the scanning air puff tonometer for biological studies. Phys Rev E 81(2):021920

    Article  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  Google Scholar 

  • Gilbert SF (2003) Developmental biology (with CD). Sinauer Associates, Sunderland

    Google Scholar 

  • Gillette R (1944) Cell number and cell size in the ectoderm during neurulation (Ambystoma maculatum). J Exp Zool 96:201–222

    Article  Google Scholar 

  • Gordon R (1983) Computational embryology of the vertebrate nervous system. In: Geisow M, Barrett A (eds) Computing in biological science. Elsevier/North-Holland, Amsterdam, pp 23–70

    Google Scholar 

  • Gordon R (1985) A review of the theories of vertebrate neurulation and their relationship to the mechanics of neural tube birth defects. J Embryol Exp Morph 89(suppl):229–255

    Google Scholar 

  • Gordon R (1999) The hierarchical genome and differentiation waves: novel unification of development, genetics and evolution. World Scientific/Imperial College Press, Singapore

    Book  Google Scholar 

  • Gordon R (2006) Mechanics in embryogenesis and embryonics: prime mover or epiphenomenon? Int J Dev Biol 50(2/3):245–253

    Article  Google Scholar 

  • Gordon R (2008) Over-confident anti-creationists versus over-confident creationists. In: Gordon R, Seckbach J (eds) Divine action and natural selection: science, faith and evolution. World Scientific, Singapore, pp 216–247

    Chapter  Google Scholar 

  • Gordon R (2009) Google embryo for building quantitative understanding of an embryo as it builds itself: II. Progress toward an embryo surface microscope. Biol Theory Integrat Dev Evol Cogn 4(4):396–412

    Google Scholar 

  • Gordon R (2011) Epilogue: the diseased breast lobe in the context of X-chromosome inactivation and differentiation waves. In: Tot T (ed) Breast cancer: a lobar disease. Springer, London, pp 205–210

    Google Scholar 

  • Gordon R, Björklund NK (1996) How to observe surface contraction waves on axolotl embryos. Int J Dev Biol 40(4):913–914

    Google Scholar 

  • Gordon R, Brodland GW (1987) The cytoskeletal mechanics of brain morphogenesis. Cell state splitters cause primary neural induction. Cell Biophys 11:177–238

    Article  Google Scholar 

  • Gordon R, Drum RW (1994) The chemical basis for diatom morphogenesis. Int Rev Cytol 150(243–372):421–422

    Article  Google Scholar 

  • Gordon R, Jacobson AG (1978) The shaping of tissues in embryos. Scient Am 238(6):106–113

    Article  Google Scholar 

  • Gordon R, Tiffany MA (2011) Possible buckling phenomena in diatom morphogenesis. In: Seckbach J, Kociolek JP (eds) The diatom world. Springer, Dordrecht, pp 245–272

    Chapter  Google Scholar 

  • Gordon R, Westfall JE (2009) Google embryo for building quantitative understanding of an embryo as it builds itself: I. Lessons from Ganymede and Google Earth. Biol Theory Integrat Dev Evol Cogn 4(4):390–395, +  Supplementary Appendix

    Google Scholar 

  • Gordon R, Goel NS, Steinberg MS, Wiseman LL (1972) A rheological mechanism sufficient to explain the kinetics of cell sorting. J Theor Biol 37(1):43–73

    Article  Google Scholar 

  • Gordon R, Goel NS, Steinberg MS, Wiseman LL (1975) A rheological mechanism sufficient to explain the kinetics of cell sorting. In: Mostow GD (ed) Mathematical models for cell rearrangement. Yale University Press, New Haven, pp 196–230

    Google Scholar 

  • Gordon R, Björklund NK, Nieuwkoop PD (1994) Dialogue on embryonic induction and differentiation waves. Int Rev Cytol 150:373–420

    Article  Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69(13):2013–2016

    Article  Google Scholar 

  • Hale AR (1952) Morphogenesis of volar skin in the human fetus. Am J Anat 91(1):147–181

    Article  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421(6925):841–843

    Article  Google Scholar 

  • Happel J, Brenner H (1991) Low Reynolds number hydrodynamics: with special applications to particulate media, 2nd edn. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179

    Article  Google Scholar 

  • Harvey EN (1931a) A determination of the tension at the surface of eggs of the annelid, Chaetopterus. Biol Bull 60:67–71

    Article  Google Scholar 

  • Harvey EN (1931b) The tension at the surface of marine eggs, especially those of the sea urchin, Arbacia. Biol Bull 61:273–279

    Article  Google Scholar 

  • Harvey EN, Fankhauser G (1933) The tension at the surface of eggs of the salamander, Triturus (Diemyctylus) viridescens. J Cell Comp Physiol 3:463–473

    Article  Google Scholar 

  • Hay GE (1953) Vector and tensor analysis. Dover, New York

    MATH  Google Scholar 

  • Hayashi T, Carthew RW (2004) Surface mechanics mediate pattern formation in the developing retina. Nature 431(7009):647–652

    Article  Google Scholar 

  • His W (1888) On the principles of animal morphology. Roy Soc Edinburgh Proc 15:287–298

    Google Scholar 

  • Hoogaars WMH, Christoffels VM, Moorman AFM (2007) Morphogenesis of the vertebrate heart. Adv Dev Biol 18:31–68

    Article  Google Scholar 

  • Ibelgaufts H (2011) COPE: cytokines & cells online pathfinder encyclopedia: cell types. http://www.copewithcytokines.org/cope.cgi?key=celltypes. Accessed 3 Apr 2011

  • Jacobson AG (1991) Experimental analyses of the shaping of the neural plate and tube. Am Zool 31(4):628–643

    Article  Google Scholar 

  • Jacobson AG (2001) Somites and head mesoderm arise from somitomeres. In: Sanders EJ, Lash JW, Ordahl CP (eds) The origin and fate of somites. Ios Press, Amsterdam, pp 6–29

    Google Scholar 

  • Jacobson AG, Gordon R (1976) Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J Exp Zool 197:191–246

    Article  Google Scholar 

  • Keller RE, Danilchik M, Gimlich R, Shih J (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J Embryol Exp Morph 89(suppl):185–209

    Google Scholar 

  • Kitano Y, von Allmen D, Kanai M, Quinn TM, Davies P, Flake AW (2001) Fetal lung growth after short-term tracheal occlusion is linearly related to intratracheal pressure. J Appl Physiol 90(2):493–500

    Google Scholar 

  • Kornikova E, Troshina T, Kremnyov S, Beloussov L (2010) Neuro-mesodermal patterns in artificially deformed embryonic explants: a role of mechano-geometry in tissue differentiation. Dev Dyn 239:885–896

    Article  Google Scholar 

  • Krause A, Zacharias W, Camarata T, Linkhart B, Law E, Lischke A, Miljan E, Simon HG (2004) Tbx5 and Tbx4 transcription factors interact with a new chicken PDZ-LIM protein in limb and heart development. Dev Biol 273(1):106–120

    Article  Google Scholar 

  • Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7(11):883–890

    Article  Google Scholar 

  • Kücken M (2007) Models for fingerprint pattern formation. Forensic Sci Int 171(2–3):85–96

    Article  Google Scholar 

  • Kücken M, Newell AC (2005) Fingerprint formation. J Theor Biol 235(1):71–83

    Article  MathSciNet  Google Scholar 

  • Ladher R, Schoenwolf GC (2005) Making a neural tube: neural induction and neurulation. In: Jacobson M, Rao MS (eds) Developmental neurobiology. Kluwer Academic/Plenum, Dordrecht, pp 1–20

    Chapter  Google Scholar 

  • Lamb TD, Collin SP, Pugh EN (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8:960–975

    Article  Google Scholar 

  • Lawrence PA, Struhl G (1996) Morphogens, compartments, and pattern: lessons from Drosophila? Cell 85(7):951–961

    Article  Google Scholar 

  • le Noble F, Fleury V, Pries A, Corvol P, Eichmann A, Reneman RS (2005) Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res 65(3):619–628

    Article  Google Scholar 

  • Liberatore CM, Searcy-Schrick RD, Yutzey KE (2000) Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol 223(1):169–180

    Article  Google Scholar 

  • Lindsey CC (1962) Experimental study of meristic variation in a population of threespine sticklebacks, Gasterosteus aculeatus. Can J Zool 40(2):271–312

    Article  Google Scholar 

  • Lu X, le Noble F, Yuan L, Jiang Q, de Lafarge B, Sugiyama D, Breant C, Claes F, De Smet F, Thomas J-L, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432(7014):179–186

    Article  Google Scholar 

  • Marlow F, Zwartkruis F, Malicki J, Neuhauss SC, Abbas L, Weaver M, Driever W, Solnica-Krezel L (1998) Functional interactions of genes mediating convergent extension, knypek and trilobite, during the partitioning of the eye primordium in zebrafish. Dev Biol 203(2):382–399

    Article  Google Scholar 

  • Martin CC, Gordon R (1997) Ultrastructural analysis of the cell state splitter in ectoderm cells differentiating to neural plate and epidermis during gastrulation in embryos of the axolotl Ambystoma mexicanum. Russ J Dev Biol 28(2):71–80

    Google Scholar 

  • Meyers M, Chawla K (2008) Mechanical behaviour of materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Munevar S, Wang YL, Dembo M (2004) Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117(1):85–92

    Article  Google Scholar 

  • Nakanishi Y, Sugiura F, Kishi J, Hayakawa T (1986) Scanning electron microscopic observation of mouse embryonic submandibular glands during initial branching: preferential localization of fibrillar structures at the mesenchymal ridges participating in cleft formation. J Embryol Exp Morphol 96:65–77

    Google Scholar 

  • Newman TJ (2008) Grid-free models of multicellular systems, with an application to large-scale vortices accompanying primitive streak formation. Curr Top Dev Biol 81:157–182

    Article  Google Scholar 

  • Nouri C, Luppes R, Veldman AEP, Tuszynski JA, Gordon R (2008) Rayleigh instability of the inverted one-cell amphibian embryo. Phys Biol 5(1):015006

    Article  Google Scholar 

  • Paley W (1802) Natural theology: or the evidences of the existence and attributes of the deity, collected from the appearances of nature. Charles Griffin and Co., London

    Google Scholar 

  • Pelcé P (2000) Theory of growth and form in condensed matter physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Piatigorsky J, Wistow GJ (1989) Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell 57(2):197–199

    Article  Google Scholar 

  • Plageman TF Jr, Chung MI, Lou M, Smith AN, Hildebrand JD, Wallingford JB, Lang RA (2010) Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137(3):405–415

    Article  Google Scholar 

  • Pouille PA, Farge E (2008) Hydrodynamic simulation of multicellular embryo invagination. Phys Biol 5(1):015005

    Article  Google Scholar 

  • Pourquié O (2003) The segmentation clock: converting embryonic time into spatial pattern. Science 301(5631):328–330

    Article  Google Scholar 

  • Prud’Homme RK (1995) Foams: theory, measurement and applications. CRC Press, Boca Raton

    Google Scholar 

  • Richman DP, Stewart RM, Hutchinson JW, Caviness VS (1975) Mechanical model of brain convolutional development. Science 189(4196):18–21

    Article  Google Scholar 

  • Rossi EL (1998) The Feigenbaum scenario as a model of the limits of conscious information processing. Biosystems 46(1–2):113–122

    Article  Google Scholar 

  • Sarasin P, Sarasin F (1889) Ergebnisse Naturwissenschaftlicher. Forschungen auf Ceylon in den Jahren 1884–1886. Zur Entwicklungsgeschichte und Anatomie der Ceylonesischen Blindwühle Ichthyophis glutinosus (Epicrium Glutinosum Aut.)./Scientific results. Research on Ceylon in the years 1884–1886. On the developmental history and anatomy of the Ceylon Blind Burrower Ichthyophis glutinosus, vol 2. C.W. Kreidel’s Verlag, Wiesbaden

    Google Scholar 

  • Schiffmann Y (2006) Symmetry breaking and convergent extension in early chordate development. Prog Biophys Mol Biol 92(2):209–231

    Article  MathSciNet  Google Scholar 

  • Schultz JE, Witt SA, Nieman ML, Reiser PJ, Engle SJ, Zhou M, Pawlowski SA, Lorenz JN, Kimball TR, Doetschman T (1999) Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest 104(6):709–719

    Article  Google Scholar 

  • Sebel P (1985) Respiration, the breath of life. Torstar Books, New York

    Google Scholar 

  • Seckbach J, Gordon R (eds) (2008) Divine action and natural selection: science, faith and evolution. World Scientific, Singapore

    Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N (1999) FGF10 is essential for limb and lung formation. Nat Genet 21(1):138–141

    Article  Google Scholar 

  • Setton LA, Chen J (2006) Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 88A:52–57

    Article  Google Scholar 

  • Snow MHL (1975) Embryonic development of tetraploid mice during the second half of gestation. J Embryol Exp Morphol 34:707–721

    Google Scholar 

  • Stein MB, Gordon R (1982) Epithelia as bubble rafts: a new method for measuring cell shape and intercellular adhesion in embryonic and other epithelia. J Theor Biol 97:625–635

    Article  Google Scholar 

  • Stroka KM, Aranda-Espinoza H (2010) A biophysical view of the interplay between mechanical forces and signaling pathways during transendothelial cell migration. FEBS J 277(5):1145–1158

    Article  Google Scholar 

  • Suga H, Tschopp P, Graziussi DF, Stierwald M, Schmid V, Gehring WJ (2010) Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. Proc Natl Acad Sci USA 107(32):14263–14268

    Article  Google Scholar 

  • Taber L (2006) Biophysical mechanisms of cardiac looping. Int J Dev Biol 50(2/3):323–332

    Article  Google Scholar 

  • Taylor GI (1969) Instability of jets, threads, and sheets of viscous fluid. In: Hetenyi M, Vincenti WG (eds) Applied mechanics: proceedings of the International Congress of Applied Mechanics (12th) Stanford University, 26–31 Aug 1968. Defense Technical Information Center, pp 382–388

    Google Scholar 

  • Tenney RM, Discher DE (2009) Stem cells, microenvironment mechanics, and growth factor activation. Curr Opin Cell Biol 21(5):630–635

    Article  Google Scholar 

  • Travis J (1995) The ghost of Geoffroy Saint-Hilaire: frog and fly genes revive the ridiculed idea that vertebrates resemble upside-down insects. Sci News 148(14):216–218

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B237:37–72

    Article  Google Scholar 

  • Unbekandt M, del Moral PM, Sala FG, Bellusci S, Warburton D, Fleury V (2008) Tracheal occlusion increases the rate of epithelial branching of embryonic mouse lung via the FGF10-FGFR2b-Sprouty2 pathway. Mech Dev 125(3–4):314–324

    Article  Google Scholar 

  • Valentine JW (2004) On the origin of phyla. University of Chicago Press, Chicago

    Google Scholar 

  • Valouch P, Melichna J, Sládeček F (1971) The number of cells at the beginning of gastrulation depending on the temperature in different species of amphibians. Acta Universitatis Carolinae Biol 1970(2):195–205

    Google Scholar 

  • Van Den Biggelaar JAM, Edsinger-Gonzales E, Schram FR (2002) The improbability of dorso-ventral axis inversion during animal evolution, as presumed by Geoffroy Saint Hilaire. Contrib Zool 71(1–3):29–36

    Google Scholar 

  • Waddington CH (1934) Morphogenetic fields. Being a review of the elements of experimental embryology by J. S. Huxley and G. R. de Beer. Sci Prog (Lond) 29:336–346

    Google Scholar 

  • Waddington CH (1939) Order of magnitude of morphogenetic forces. Nature 144:637

    Article  Google Scholar 

  • Waddington CH (1942) Observations on the forces of morphogenesis in the amphibian embryo. J Exp Biol 19:284–293

    Google Scholar 

  • Wang H, Riha GM, Yan SY, Li M, Chai H, Yang H, Yao QZ, Chen CY (2005) Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol 25(9):1817–1823

    Article  Google Scholar 

  • Wang Y, Badea T, Nathans J (2006) Order from disorder: self-organization in mammalian hair patterning. Proc Natl Acad Sci USA 103(52):19800–19805

    Article  Google Scholar 

  • Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleux A, Tefft D, Unbekandt M, Wang K, Shi W (2005) Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 57(5 Pt 2):26R–37R

    Article  Google Scholar 

  • Wernig F, Mayr M, Xu QB (2003) Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by ß1-integrin signaling pathways. Hypertension 41(4):903–911

    Article  Google Scholar 

  • West-Eberhard MJ (2002) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wolf LV, Yang Y, Wang JH, Xie Q, Braunger B, Tamm ER, Zavadil J, Cvekl A (2009) Identification of Pax6-dependent gene regulatory networks in the mouse lens. PLoS One 4(1):e4159

    Article  Google Scholar 

  • Zajac M, Jones GL, Glazier JA (2003) Simulating convergent extension by way of anisotropic differential adhesion. J Theor Biol 222(2):247–259

    Article  Google Scholar 

  • Zallen JA, Blankenship JT (2008) Multicellular dynamics during epithelial elongation. Semin Cell Dev Biol 19(3):263–270

    Article  Google Scholar 

Download references

Acknowledgements

Vincent Fleury acknowledges the contribution of several collaborators to the development of the air-puff tonometer, especially Annemiek Cornelissen. Protocols for embryo rinsing were improved during the PhD thesis of Alia Al-Kilani on vascular development and the post-doc of Yelena Boryskina-Melezhik on limb plate viscoelasticity. We thank Susan Crawford-Young for a critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Fleury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fleury, V., Gordon, R. (2012). Coupling of Growth, Differentiation and Morphogenesis: An Integrated Approach to Design in Embryogenesis. In: Swan, L., Gordon, R., Seckbach, J. (eds) Origin(s) of Design in Nature. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4156-0_22

Download citation

Publish with us

Policies and ethics