Skip to main content

Noise in Neurons and Other Constraints

  • Chapter
  • First Online:
Computational Systems Neurobiology

Abstract

How do the properties of signalling molecules constrain the structure and function biological networks such as those of our brain? Here we focus on the action potential, the fundamental electrical signal of the brain, because malfunction of the action potential causes many neurological conditions. The action potential is mediated by the concerted action of voltagegated ion channels and relating the properties of these signalling molecules to the properties of neurons at the systems level is essential for biomedical brain research, as minor variations in properties of a neurons individual component, can have large, pathological effects on the physiology of the whole nervous system and the behaviour it generates. This approach is very complex and requires us to discuss computational methods that can span across many levels of biological organization, from single signalling proteins to the organization of the entire nervous system, and encompassing time scales from milliseconds to hours.Within this methodical framework, we will focus on how the properties of voltagegated ion channels relate to the functional and structural requirements of axonal signalling and the engineering design principles of neurons and their axons (nerve fibres). This is important, not only because axons are the essential wires that allow information transmission between neurons, but also because they play a crucial in neural computation itself.

Many properties at the molecular level of the nervous system display noise and variability, which in turn makes it difficult to understand neuronal design and behaviour at the systems level without incorporating the sources of this probabilistic behaviour. To this end we have developed computationalmethods, which will enable us to conduct stochastic simulations of neurons that account for the probabilistic behaviour of ion channels. This allows us to explore the relationship between individual ion channel properties, derived from high-resolution patch clamp data,and the properties of axons. The computational techniques we introduce here will allow us to tackle problems that are (1) beyond the reach of experimental methods, because we can disambiguate the effects of variability and reliability of individual molecular components to whole cell behaviour, and (2) allow us to consider the many finer fibers in the central and peripheral system, which are experimentally difficulty to access and record from. We start with the well-established data that Ion channels behave with an element of randomness resulting in “channel noise”. The impact of channel noise in determining axonal structure and function became apparent only very recently, because in the past findings were extrapolated from very large unmyelinated axons (squid giant axon), where channel noise had little impact due to the law of large numbers. However, the many axons in the central and peripheral nervous system are over 1,000 times thinner and the small number of ion channels involved in sustaining the action potential, imply that channel noise can affect signalling and constraint both the reliability of neural circuit function, but also sets limits to the anatomy of the brain as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On the other side brains and organisms build themselves from themselves.

  2. 2.

    but, consider the following reflections of our nervous system’s variability: the little random motions of a pointed finger, our uncertainty when try to understand a conversation in the presence of loud background noise, or when we seem not able to see our keys that were in plain view when we were searching for them.

  3. 3.

    We ignore here synaptic input as a form of electrical “noise” and note that the common use of the term “synaptic background noise” denotes the (not necessarily random) variability produced by massive synaptic input in cortical neurons (Faisal et al. 2008).

  4. 4.

    using the Gillespie algorithm described.

References

  • Arvanitaki A (1942) Effects evoked in an axon by the activity of a contiguos one. J Neurophysiol 5:89–108

    Google Scholar 

  • Augustine GJ (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobiol 11(3):320–326

    Article  PubMed  CAS  Google Scholar 

  • Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8(6):1185–202

    Article  PubMed  CAS  Google Scholar 

  • Blair E, Erlanger J (1933) A comparison of the characteristics of axons through their individual electric responses. Am J Physiol 106:524–564

    Google Scholar 

  • Braitenberg V, Schütz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Hamburg

    Google Scholar 

  • Bryant H, Segundo J (1976) Spike initiation by transmembrane current: a white-noise analysis. J Physiol (London) 260:279–314

    CAS  Google Scholar 

  • Chow C, White J (1996) Spontaneous action potentials due to channel fluctuations. Biophys J 71:3012–3021

    Article  Google Scholar 

  • Clay JR, DeFelice LJ (1983) Relationship between membrane excitability and single channel open–close kinetics. Biophys J 42(2):151–157

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Wanke E (1975) Channel noise in nerve membranes and lipid bilayers. Q Rev Biophys 8:451–506

    Article  PubMed  CAS  Google Scholar 

  • Cover T, Thomas J (1991) Elements of information theory, 1st edn. Wiley series in telecommunications. Wiley-Interscience, New York

    Book  Google Scholar 

  • Debanne D (2004) Information processing in the axon. Nat Rev Neurosci 5(4):304–16

    Article  PubMed  CAS  Google Scholar 

  • de Polavieja G, Harsch A, Kleppe I, Robinson H, Juusola M (2005) Stimulus history reliably shapes action potential waveforms of cortical neurons. J Neurosci 25(23):5657–5665

    Article  PubMed  Google Scholar 

  • Derksen H, Verveen A (1966) Fluctuations of resting neural membrane potential. Science 12:1388–1389

    Article  Google Scholar 

  • Dorval A Jr, White J (2005) Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci 25(43):10025–10028

    Article  PubMed  CAS  Google Scholar 

  • Faisal AA (2007) Studying channelopathies at the functional level using a system identification approach.​ In: Siebes APJM, Berthold MR, Glen RC, Feelders AJ (eds) Computational lifesciences II, vol 940. AIP, pp 113–126

    Google Scholar 

  • Faisal AA (2010) Stochastic methods in neuroscience.Chapter 11:Stochastic simulations of neurons, axons, and action potentials. Oxford University Press, Oxford, pp 297–343

  • Faisal A, Laughlin S (2004) Effect of channel noise on the propagating ap wave form and its potential impact on synaptic transmission. J Physiol 555P:492

    Google Scholar 

  • Faisal A, Laughlin S (2007) Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS Comput Biol 3(5):e79

    Article  PubMed  Google Scholar 

  • Faisal AA, Niven JE (2006) A simple method to simultaneously track the numbers of expressed channel proteins in a neuron. Lect Notes Comput Sci 4216:257

    Article  Google Scholar 

  • Faisal A, Laughlin S, White J (2002) How reliable is the connectivity in cortical neural networks? In: Wunsch D (ed) Proceedings of the IEEE international joint conference on neural networks 2002, Honolulu. INNS, pp 1661–1667

    Google Scholar 

  • Faisal A, White J, Laughlin S (2005) Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr Biol 15(12):1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Faisal A, Selen L, Wolpert D (2008) Noise in the nervous system. Nat Rev Neurosci 9(4):292–303

    Article  PubMed  CAS  Google Scholar 

  • Fitzhugh R (1965) A kinetic model of the conductance changes in nerve membrane. J Cell Comp Physiol 66:111–118

    Article  CAS  Google Scholar 

  • Franciolini F (1987) Spontaneous firing and myelination of very small axons. J theor Biol 128:127–134

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser B, Hodgkin A (1956) The after-effects of impulses in the giant nerve fibers of loligo. J Physiol 131:341–376

    PubMed  CAS  Google Scholar 

  • Franks KM, Stevens CF, Sejnowski TJ (2003) Independent sources of quantal variability at single glutamatergic synapses. J Neurosci 23(8):3186–95

    PubMed  CAS  Google Scholar 

  • Hartwell L, Hopfield J, Leibler S, Murray A (1999) From molecular to modular cell biology. Nature 402 Supplement:C47–C42

    Google Scholar 

  • Hille B (1970) Ionic channels in nerve membranes. Prog. Biophys. Mol. Biol 21:3–28

    Article  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, p 814

    Google Scholar 

  • Ho N, Destexhe A (2000) Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J Neurophysiol 84(3):1488–96

    PubMed  CAS  Google Scholar 

  • Hodgkin A (1964) The ionic basis of nervous conduction. Science 145(3637):1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin A, Huxley A (1952) Quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500–544

    CAS  Google Scholar 

  • Horikawa Y (1991) Noise effects on spike propagation in the stochastic Hodgkin–Huxley models. Biol Cybern 66:19–25

    Article  PubMed  CAS  Google Scholar 

  • Katz B (1971) Quantal mechanism of neural transmitter release. Science 173(992):123–126

    Article  PubMed  CAS  Google Scholar 

  • Katz B, Schmitt O (1940) Electric interaction between two adjacent nerve fibres. J.Physiol 97:471–488

    PubMed  CAS  Google Scholar 

  • Koch C (1999) Biophysics of computation. Computational neuroscience. Oxford University Press, Oxford

    Google Scholar 

  • Lass Y, Abeles M (1975a) Transmission of information by the axon: 1. Noise and memory in the myelinated nerve fiber of the frog. Biol Cybern 19:61–67

    CAS  Google Scholar 

  • Lass Y, Abeles M (1975b) Transmission of information by the axon: 2. Information theoretic analysis(?). Biol Cybern 19:121–125

    Article  PubMed  Google Scholar 

  • Laughlin S (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch 36c:910–912

    Google Scholar 

  • Lecar H, Nossal R (1971) Theory of threshold fluctuations in nerves: 2. Analysis of various sources of membrane noise. Biophys J 11:1068–1084

    CAS  Google Scholar 

  • Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15(6):1427–39

    Article  PubMed  CAS  Google Scholar 

  • Manwani A, Koch C (1999a) Detecting and estimating signals in noisy cable structures, i: neuronal noise sources. Neural Comput 11:1797–1829

    Article  PubMed  CAS  Google Scholar 

  • Manwani A, Koch C (1999b) Detecting and estimating signals in noisy cable structures, ii: information theoretic analysis. Neural Comput 11:11831–1873

    Google Scholar 

  • Markov A (1906) Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete 15(2-ya seriya):135–156

    Google Scholar 

  • Markov A (1971) Extension of the limit theorems of probability theory to a sum of variables connected in a chain (translation). In: Howard R (ed) Dynamic probabilistic systems, vol 1: Markov Chains. Wiley, New York. Reprinted in Appendix B

    Google Scholar 

  • McBain C, Traynelis S, Dingledine R (1990) Regional variation of extracellular space in the hippocampus. Science 249:674–677

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 321:225–57

    PubMed  CAS  Google Scholar 

  • Patlak J (1991) Molecular kinetics of voltage-dependent na+ channels. Physiol Rev 71(4):1047–1080

    PubMed  CAS  Google Scholar 

  • Pecher C (1939) La fluctuation d’excitabilite de la fibre nerveuse. Arch Int Physiol Biochem 49:129–152

    Article  Google Scholar 

  • Prinz AA, Abbott LF, Marder E (2004a) The dynamic clamp comes of age. Trends Neurosci 27(4):218–224

    Article  PubMed  CAS  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004b) Similar network activity from disparate circuit parameters. Nat Neurosci 7(12):1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1969a) Distributions of potential in cylindrical coordinates and time constants for a membrane cylinder. Biophys J 9(12):1509–41

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1969b) Time constants and electrotonic length of membrane cylinders and neurons. Biophys J 9(12):1483–508

    Article  PubMed  CAS  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W (1997) Spikes : exploring the neural code. Computational neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Robinson H, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49(3):157–165

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein J.T (1995) Threshold fluctuations in an n sodium channel model of the node of ranvier. Biophys J 68(3):779–85

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B, Neher E (1995) Single-Channel recording, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  • Schmitz D et al (2001) Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31:831–840

    Article  PubMed  CAS  Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput 10:1679–1703

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1995) Is there a signal in the noise? Curr Opin Neurobiol 5(2): 248–50

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10):3870–96

    PubMed  CAS  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:373–423,623–656

    Google Scholar 

  • Sharp A, O’Neil M, Abbott L, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69(3):992–995

    PubMed  CAS  Google Scholar 

  • Sigworth FJ (1980) The variance of sodium current fluctuations at the node of ranvier. J Physiol 307:97–129

    PubMed  CAS  Google Scholar 

  • Sigworth FJ, Neher E (1980) Single na+ channel currents observed in cultured rat muscle cells. Nature 287(5781):447–449

    Article  PubMed  CAS  Google Scholar 

  • Skaugen E, WallœL (1979) Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin–Huxley equations. Acta Physiol Scand 107:343–363

    Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. J Neurosci 13(1):334–50

    PubMed  CAS  Google Scholar 

  • Steinmetz PN, Manwani A, Koch C, London M, Segev I (2000) Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. J Comput Neurosci 9(2):133–48

    Article  PubMed  CAS  Google Scholar 

  • Strassberg A, DeFelice L (1993) Limitation of the Hodgkin–Huxley formalism: effects of single channel kinetics on transmembrane voltage dynamics. Nueral Comput 5:843–855

    Article  Google Scholar 

  • Strong S, Koberle R, de Ruyter van Steveninck R, Bialek W (1998) Entropy and information in neural spike trains. Phys Rev Lett 80(1):197–200

    Google Scholar 

  • Tamas G, Szabadics J (2004) Summation of unitary ipsps elicited by identified axo-axonic interneurons. Cereb Cortex 14(8):823–826

    Article  PubMed  Google Scholar 

  • Verveen AA (1962) Axon diameter and fluctuation in excitability. Acta Morphol Neerl Scand 5:79–85

    PubMed  CAS  Google Scholar 

  • Verveen AA, Derksen HE, Schick KL (1967) Voltage fluctuations of neural membrane. Nature 216(115):588–589

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG, Bennett MV (1972) Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nat New Biol 238(85):217–219

    PubMed  CAS  Google Scholar 

  • White J, Rubinstein J, Kay A (2000) Channel noise in neurons. Trends Neurosci 23(3):131–137

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aldo Faisal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Faisal, A.A. (2012). Noise in Neurons and Other Constraints. In: Le Novère, N. (eds) Computational Systems Neurobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3858-4_8

Download citation

Publish with us

Policies and ethics