Skip to main content

State Estimation and the Cerebellum

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The central nervous system (CNS), in order to accurately control the movements we perform, needs to be constantly informed about the state of the motor apparatus. However, the quality of the control is challenged by several factors like biological noise and delays. It is widely believed that the CNS overcomes these challenges by calculating an estimation of the state, available before the sensors provide any information. This state prediction is the output of internal forward models. Control theory schemes have been used to summarize the existing knowledge about state estimation and to improve our understanding of human movement control. The first part of this chapter presents control theory frameworks that have been proposed based on the concepts of state prediction and state estimation. The concepts introduced by control theory models can only be validated, extended, or discarded based on experimental evidence. There is a plethora of studies suggesting that the cerebellum holds internal forward models, and is thus responsible for the calculation of the state prediction. The second part of this chapter reviews converging evidence from neurophysiology, neuropsychology, and behavioral neuroscience that illustrate the contribution of the cerebellum to state estimation. Functional imaging experiments, patient studies, and adaptation experiments suggest that cerebellar learning mechanisms are critical for accurate state estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baizer JS, Kralj-Hans I, Glickstein M (1999) Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 81:1960–1965

    PubMed  CAS  Google Scholar 

  • Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578:387–396

    Article  PubMed  CAS  Google Scholar 

  • Berniker M, Kording K (2008) Estimating the sources of motor errors for adaptation and generalization. Nat Neurosci 11:1454–1461

    Article  PubMed  CAS  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  PubMed  CAS  Google Scholar 

  • Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12:1879–1884

    Article  PubMed  CAS  Google Scholar 

  • Cerminara NL, Apps R, Marple-Horvat DE (2009) An internal model of a moving visual target in the lateral cerebellum. J Physiol 587:429–442

    Article  PubMed  CAS  Google Scholar 

  • Diedrichsen J, Shadmehr R, Ivry RB (2010) The coordination of movement: optimal feedback control and beyond. Trends Cogn Sci 14:31–39

    Article  PubMed  Google Scholar 

  • Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95:131–143

    Article  PubMed  CAS  Google Scholar 

  • Galea JM, Vazquez A, Pasricha N, Orban d, X, and Celnik P (2010) Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. doi:10.1093/cercor/bhq246

    Google Scholar 

  • Haggard P, Wolpert DM (2005) Disorders of body scheme. In: Freund H, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders. Oxford University Press, Oxford

    Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564

    Article  PubMed  CAS  Google Scholar 

  • Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188

    Article  PubMed  Google Scholar 

  • Liu X, Robertson E, Miall RC (2003) Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol 89:1223–1237

    Article  PubMed  Google Scholar 

  • Manto M, Godaux E, Jacquy J (1994) Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol 35:45–52

    Article  PubMed  CAS  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119(Pt 4):1183–1198

    Article  PubMed  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Motor Behav 25:203–216

    Article  CAS  Google Scholar 

  • Miall RC, Keating JG, Malkmus M, Thach WT (1998) Simple spike activity predicts occurrence of complex spikes in cerebellar Purkinje cells. Nat Neurosci 1:13–15

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:2733–2744

    Article  CAS  Google Scholar 

  • Nowak DA, Timmann D, Hermsdorfer J (2007) Dexterity in cerebellar agenesis. Neuropsychologia 45:696–703

    Article  PubMed  Google Scholar 

  • Roitman AV, Pasalar S, Johnson MT, Ebner TJ (2005) Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci 25:9244–9257

    Article  PubMed  CAS  Google Scholar 

  • Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nature 5:534–546

    Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  PubMed  CAS  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • Vercher JL, Gauthier GM (1988) Cerebellar involvement in the coordination control of the oculo-manual tracking system: effects of cerebellar dentate nucleus lesion. Exp Brain Res 73:155–166

    Article  PubMed  CAS  Google Scholar 

  • Winkelman B, Frens M (2006) Motor coding in floccular climbing fibers. J Neurophysiol 95:2342–2351

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor control. Science 269:1880–1882

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

RH and RCM are supported by the Wellcome Trust; MD is supported by the EU FP7 ITN “C7.” MD reviewed the theoretical models underlying state estimation and RH compiled empirical evidence. We thank Jonathan Winter for producing Fig. 57.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hardwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hardwick, R.M., Dagioglou, M., Miall, R.C. (2013). State Estimation and the Cerebellum. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_57

Download citation

Publish with us

Policies and ethics