Skip to main content

Trace Gas Emissions from Biomass Burning in Southern Africa’s Savannah

  • Chapter
  • First Online:
Biomass Burning in Sub-Saharan Africa

Abstract

Savannah is the most extensive biome supporting fires in Africa and thus contributes to the largest source of trace gas emissions. The relative proportion of trace gases emission varies in response to the ease in which biomass can burn, as determined by fuel moisture, size, type and load. As a result, this chapter determines the effects of fuel moisture, type, size and load on CO2, CO and NOx emissions during biomass burning in southern Africa’s savannah. Data used was obtained from the SAFARI 2000 collaborative research project on biomass burning emissions over southern Africa. The study covers southern African countries such as South Africa, Zambia, Namibia and Malawi. Results show that fuel moisture content is an essential factor that determines fuel burning behaviour and thus emissions of trace gases. Emissions of CO2, CO and NOx are high when fuel moisture content is smaller than 5%, and then decline with an increase in moisture above that level. Burning of bush fuels (larger than 4 cm) and branches (smaller than 2 cm) result in high emission of CO2, CO and NOx, as opposed to the emissions resulting from the burning of grasses and litter. It is further shown that an increase in dry fuel load positively increases the emission of CO2 (R2 = 0.205), CO (R2 = 0.252) and NOx (R2 = 0.161).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Wilgen, B. W., Biggs, H. C., O’Regan, S. P., & Maré, N. (2000). A fire history of savanna ecosystems in the Kruger National Park, South Africa, between 1941 and 1996. South African Journal of Science, 96, 167–178.

    Google Scholar 

  2. van Wilgen, B. W., Trollope, W. S. W., Biggs, H. C., Potgieter, A. L. F., & Brockett, B. H. (2003). Fire as a driver of ecosystem variability. In J. T. Du Toit, K. H. Rogers, & H. C. Biggs (Eds.), The Kruger experience: Ecology and management of savanna heterogeneity (pp. 149–170). Washington: Island Press.

    Google Scholar 

  3. Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: Impacts on atmosphere chemistry and biogeochemical cycles. Science, 250, 1669–1678.

    Article  CAS  Google Scholar 

  4. Crutzen, P. J., Heidt, L. E., Kransec, W. H., & Seiler, W. (1997). Biomass burning as a source of atmospheric trace gases, CO, H2, N2O, NO, CH3Cl and COS. Nature, 18, 253–256.

    Google Scholar 

  5. Andreae, M. O. (2004). Assessment of global emissions from vegetation fires. International Forest Fire News (IFFN), 31, 112–121.

    Google Scholar 

  6. Justice, C. O., & Korontzi, S. (2001). A review of the status of satellite fire monitoring and the requirements for global environmental change research. In F. J. Ahern, J. Goldammer, & C. O. Justice (Eds.), Global and regional wildfire monitoring from space: Planning a coordinated international effort (pp. 1–18). The Hague: SPB Academic Publishing.

    Google Scholar 

  7. NASA (2005) Fire patterns across Africa. NASA’s Earth Observatory. Retrieved July 26, 2016 from http://earthobservatory.nasa.gov/IOTD/view.php?id=5800.

  8. Cahoon, D. R., Stocks, B. J., Levine, J. S., Cofer, W. R., & O’Neill, K. P. (1992). Seasonal distribution of African savanna fires. Nature, 359, 812–815.

    Article  Google Scholar 

  9. van Wilgen, B. W., Trollope, W. S. W., & Everson, C. S. (1990). Fire management in southern Africa: Some examples of current objectives, practices and problems. In J. G. Goldammer (Ed.), Fire in the tropical biota: Ecosystem process and global challenges. Ecological studies (Vol. 84, pp. 179–215).

    Google Scholar 

  10. Scholes, R. J., Ward, D. E., & Justice, C. O. (1996). Emissions of trace gases and aerosol particles due to vegetation burning in southern hemisphere Africa. Journal of Geophysical Research, 101, 23677–23682.

    Article  CAS  Google Scholar 

  11. Andreae, M. O., Elliot, A., Cachier, H., Cofer, W. R., Harris, G. W., Helas, G., et al. (1996). Trace gas and aerosol emissions from Savanna fires. In J. S. Levine (Ed.), Biomass burning and global change (pp. 278–295). Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  12. Scholes, R. J. (1995). Greenhouse gas emissions from vegetation fires in southern Africa. Environmental Monitoring and Assessment, 38, 169–179.

    Article  CAS  Google Scholar 

  13. Andreae, M. O., Fishman, J., Garstang, M., Goldammer, J. G., Justice, C. O., Levine, J. S., et al. (1994). Biomass burning in the global environment: First results from the IGAC/BIBEX field campaign STARE/TRACE-A SAFARI-92. In R. G. Prinn (Ed.), Global atmospheric-biospheric chemistry (pp. 83–101). New York: Plenum Press.

    Chapter  Google Scholar 

  14. Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955–966.

    Article  CAS  Google Scholar 

  15. Scholes, R. J., Archibald, S., & von Maltitz, G. (2011). Emissions from fires in sub-saharan Africa: The magnitude of sources, their variability and uncertainty. Global Environmental Research, 15, 53–63.

    CAS  Google Scholar 

  16. Delmas, R., Lacaux, J. P., & Brocard, D. (1995). Determination of biomass burning emission factors: Methods and results. Environmental Monitoring and Assessment, 38, 181–204.

    Article  CAS  Google Scholar 

  17. Lacaux, J. P., Delmas, R. A., Cros, B., Lefeivre, B., & Andreae, M. O. (1996). Influence of biomass burning emissions on precipitation chemistry in the equatorial forest of Africa. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic and biospheric implication (pp. 167–173). Cambridge, MA: MIT Press.

    Google Scholar 

  18. Hao, W. M., & Ward, D. E. (1993). Methane production from global biomass burning. Journal of Geophysical Research, 98, 20657–20661.

    Article  Google Scholar 

  19. Prasad, V. K., Gupta, P. K., Sharma, C., Sarkar, A. K., Kant, Y., Badarinath, K. V. S., et al. (2000). NOx emissions from biomass burning of shifting cultivation areas from tropical deciduous forests of India–estimates from ground-based measurement. Journal of Atmospheric Environment, 34, 3271–3280.

    Article  CAS  Google Scholar 

  20. Levine, J. S. (1990). Global biomass burning: Atmosphere, climate and biosphere implications. EOS, 71, 1075–1077.

    Article  Google Scholar 

  21. Watson, C., Fishman, J., & Reichle, H. (1990). The significance of biomass burning as a source of carbon monoxide and ozone in the southern hemisphere tropics: A satellite analysis. Journal of Geophysical Research, 95, 15443–16450.

    Google Scholar 

  22. Scholes, M. C., Scholes, R. J., Otter, L. B., & Woghiren, A. J. (2003). Biogeochemistry: The cycling of elements. In J. T. Du Toit, K. H. Rogers, & H. C. Biggs (Eds.), The Kruger experience: Ecology and management of savanna heterogeneity (pp. 130–148). Washington: Island Press.

    Google Scholar 

  23. Lobert, J. M., & Warnatz, J. (1993). Emissions from the combustion process in vegetation. In P. J. Crutzen & J. G. Goldammer (Eds.), Fire in the environment: The ecological, atmospheric, and climatic importance of vegetation fires. Chichester: Wiley.

    Google Scholar 

  24. Chen, L.-W. A., Verburg, P., Shackelford, A., Zhu, D., Susfalk, R., Chow, J. C., et al. (2010). Moisture effects on carbon and nitrogen emission from burning of wildland biomass. Atmospheric Chemistry and Physics, 10, 6617–6625.

    Article  CAS  Google Scholar 

  25. Lobert, J. M., Keene, W. C., & Crutzen, P. J. (2000). SAFARI 2000 unpublished and preliminary data. Retrieved July 26, 2016 from http://JurgenLobert.net/projects/mpi_safari/.

  26. Ward, D. E., Sandberg, D. V., Ottmar, R. D., Anderson, J. A., Hofner, G. G., & Fitzsimmons, C. K. (1982). Measurements of smokes from two prescribed fires in the Pacific Northwest. In Seventy-fifth annual meeting of the air pollution control association. Minneapolis.

    Google Scholar 

  27. Hao, W. M., Ward, D. E., Olbu, G., & Baker, S. P. (1996). Emission of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems. Journal of Geographical Research, 101, 23577–23584.

    CAS  Google Scholar 

  28. Lobert, J. M., Scharffe, D. H., Hao, W. M., Kuhlbusch, T. A., Seuwen, R., Warneck, P., et al. (1991). Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic and biospheric implications (pp. 289–304). Cambridge, MA: MIT Press.

    Google Scholar 

  29. Keene, W. C., Lobert, J. M., Crutzen, P. J., Maben, J. R., Scharffe, D. H., Landmann, T., et al. (2006). Emissions of major gaseous and particulate species during experimental burns of southern African biomass. Journal of Geophysical Research, 111, D04301. https://doi.org/10.1029/2005JD006319.

    Article  CAS  Google Scholar 

  30. Possell, M., & Bell, T. (2013). Smoke composition and the flammability of forests and grasslands. Fire Note, 11, 1–4.

    Google Scholar 

  31. Hoffa, E. A., Ward, D. E., Hao, W. M., Susott, R. A., & Wakimoto, R. H. (1999). Seasonality of carbon emissions from biomass burning in a Zambian savanna. Journal of Geophysical Research, 104, 13841–13853.

    Article  CAS  Google Scholar 

  32. Korontzi, S., Justice, C. O., & Scholes, R. J. (2003). Influence of timing and spatial extent of vegetation fires in southern Africa on atmospheric emissions. Journal of Arid Environments, 54, 395–404.

    Article  Google Scholar 

  33. van Leeuwen, T. T., & van der Werf, G. R. (2011). Spatial and temporal variability in the ratio of trace gases emitted from biomass burning. Atmospheric Chemistry and Physics, 11, 3611–3629.

    Article  Google Scholar 

  34. Korontzi, S. (2005). Seasonal patterns in biomass burning emissions from southern African vegetation fires for the year 2000. Global Change Biology, 11, 1680–1700.

    Article  Google Scholar 

  35. van Leeuwen, T. T., & van der Werf, G. R. (2010). Spatial and temporal variability in the ratio of trace gases emitted from biomass burning. Atmospheric Chemistry and Physics Discussion, 10, 23559–23599.

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is made possible through the SAFARI 2000 emission database. The Oak Ridge National Laboratory is thanked for making the SAFARI 2000 data accessible to the public. Prof. Robert Scholes (Council for Scientific and Industrial Research), Prof. Jurgen Lobert (Entegris Inc.), Prof. Bill Keene (University of Virginia) and Prof. Aifheli Gelebe (University of Limpopo) are acknowledged for providing valuable comments during the initial draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudzani A. Makhado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Makhado, R.A., Saidi, A.T. (2020). Trace Gas Emissions from Biomass Burning in Southern Africa’s Savannah. In: Mammino, L. (eds) Biomass Burning in Sub-Saharan Africa. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0808-2_3

Download citation

Publish with us

Policies and ethics