Skip to main content

Comparative Biology of Fungus Cultivation in Termites and Ants

  • Chapter
  • First Online:
Biology of Termites: a Modern Synthesis

Abstract

We review the two known mutualistic symbioses between basidiomycete fungi and social insects: the attine ants and macrotermitine termites, comparing their origin, history and patterns of co-evolution, and stability. It is argued that ants are “specialised farmers of unspecialised crops”, whereas termites are “specialised farmers of specialised crops”. Furthermore, despite differences in symmetry and symbiont transmission mode, in both relationships there is a moderate specificity between partners. The unresolved debate about the main role of the symbiotic fungus in the fungus-growing termites is summarised and contrasted with the role in the fungus in attine ants, which is little debated. We compare colony foundation and structure, and the modes of symbiotic interaction between the two groups of social insects, highlighting gaps in our understanding of both systems. Finally, we discuss how these symbioses can be evolutionarily stable and the mechanisms by which the ant and termite symbionts ensure monopolies of host care. We conclude by identifying some lines of future research within the fungus-growing termite symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanen DK (2006) As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol Lett 2:209–212

    Article  PubMed  Google Scholar 

  • Aanen DK, de Fine Licht HH, Debets AJM et al (2009) High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326:1103–1106

    Article  PubMed  CAS  Google Scholar 

  • Aanen DK, Eggleton P (2005) Fungus-growing termites originated in African rain forest. Curr Biol 15:851–855

    Article  PubMed  CAS  Google Scholar 

  • Aanen DK, Eggleton P, Rouland-Lefèvre C et al (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci U S A 99:14887–14892

    Article  PubMed  CAS  Google Scholar 

  • Aanen DK, Ros V, de Fine Licht H et al (2007) Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 7:115

    Article  PubMed  Google Scholar 

  • Adams RMM, Mueller UG, Holloway AK et al (2000a) Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften 87:491–493

    Article  PubMed  CAS  Google Scholar 

  • Adams RMM, Mueller UG, Schultz TR, Norden B (2000b) Agro-predation: usurpation of attine fungus gardens by Megalomyrmex ants. Naturwissenschaften 87:549–554

    Article  PubMed  CAS  Google Scholar 

  • Amburgey TL (1979) Review and checklist of the literature on interactions between wood-inhabiting fungi and subterranean termites:1960–1978. Sociobiology 4:279–296

    Article  Google Scholar 

  • Anklin-Mühlemann R, Bignell DE, Veivers PC et al (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940

    Article  Google Scholar 

  • Bass M, Cherrett JM (1995) Fungal hyphae as a source of nutrients for the leaf-cutting ant Atta sexdens. Physiol Entomol 20:1–6

    Article  Google Scholar 

  • Bathellier J (1927) Contribution à l’ etude systématique et biologique de termites de l’Indo-Chine. Faune Colonies Francaises 1:125–365

    Google Scholar 

  • Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 189–208

    Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 363–387

    Google Scholar 

  • Bignell DE, Slaytor M, Veivers PC et al (1994) Functions of symbiotic fungus gardens in higher termites of the genus Macrotermes: evidence against the acquired enzyme hypothesis. Acta Microbiol Hung 41:391–401

    CAS  Google Scholar 

  • Boomsma JJ, Aanen DK (2009) Rethinking crop-disease management in fungus-growing ants. Proc Natl Acad Sci U S A 106:17611–17612

    Article  Google Scholar 

  • Bot ANM, Rehner SA, Boomsma JJ (2001) Partial incompatibility between ants and symbiotic fungi in two sympatric species of Acromyrmex leaf-cutting ants. Evolution 55:1980–1991

    PubMed  CAS  Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Cafaro M, Matias J, Currie CR, Cameron R (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446

    Article  PubMed  CAS  Google Scholar 

  • Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694

    Article  PubMed  CAS  Google Scholar 

  • Currie CR (2001a) A community of ants, fungi and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380

    Article  PubMed  CAS  Google Scholar 

  • Currie CR (2001b) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B 268:1033–1039

    Article  CAS  Google Scholar 

  • Currie RC (2001c) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128:99–106

    Article  Google Scholar 

  • Currie CR, Mueller UG, Malloch D (1999a) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci U S A 96:7998–8002

    Article  PubMed  CAS  Google Scholar 

  • Currie CR, Scott JA, Summerbell RC, Malloch D (1999b) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  • Darlington J (1994) Nutrition and evolution in fungus-growing termites. In: Hunt, JH, Nalepa, CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 105–130

    Google Scholar 

  • D’Ettorre PD, Mora P, Dibangou V, Rouland C, Errard C (2002) The role of the symbiotic fungus in the digestive metabolism of two species of fungus-growing ants. J Comp Physiol B 172:169–176

    Article  PubMed  Google Scholar 

  • De Fine Licht HH, Andersen A, Aanen DK (2005) Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycol Res 109:314–318

    Article  PubMed  Google Scholar 

  • De Fine Licht HH, Boomsma JJ (2010) Forage selection in fungus-growing ants. Ecol Entomol 35:259–269

    Google Scholar 

  • De Fine Licht HH, Boomsma JJ, Aanen DK (2006) Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis. Mol Ecol 15:3131–3138

    Article  PubMed  CAS  Google Scholar 

  • De Fine Licht HH, Schiøtt M, Mueller UG, Boomsma JJ (2010) Evolutionary transitions in enzyme activity of ant fungus gardens. 64:2055–2067

    PubMed  Google Scholar 

  • Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 25–51

    Google Scholar 

  • Farrell BD, Sequeira AS, O’Meara BC et al (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027

    PubMed  CAS  Google Scholar 

  • Fletcher JA, Doebeli M (2009) A simple and general explanation for the evolution of altruism. Proc R Soc Lond B 276:13–19

    Article  Google Scholar 

  • Frank SA (1996) Host-symbiont conflict over the mixing of symbiotic lineages. Proc R Soc Lond B 263:339–344

    Article  CAS  Google Scholar 

  • Frøslev TG, Aanen DK, Læssøe T, Rosendahl S (2003) Phylogenetic relationships of Termitomyces and related taxa. Mycol Res 107:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Grassé P-P, Noirot C (1955) La fondation de nouvelles sociétés par Bellicositermes natalensis Hav. Insect Soc 2:213–220

    Article  Google Scholar 

  • Green AM, Mueller UG, Adams RMM (2002) Extensive exchange of fungal cultivars between sympatric species of fungus-growing ants. Mol Ecol 11:191–195

    Article  PubMed  CAS  Google Scholar 

  • Guedegbe HJ, Miambi E, Pando A (2009a) Molecular diversity and host specificity of termite-associated Xylaria. Mycologia 101:686–691

    Article  PubMed  CAS  Google Scholar 

  • Guedegbe HJ, Miambi E, Pando A (2009b) Occurrence of fungi in combs of fungus-growing termites (Isoptera: Termitidae, Macrotermitinae). Mycol Res 113(Pt 10):1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Hart A, Anderson C, Ratnieks F (2002a) Task partitioning in leafcutting ants. Acta Ethologica 5:1–11

    Article  Google Scholar 

  • Hart A, Bot A, Brown M (2002b) A colony-level response to disease control in a leaf-cutting ant. Naturwissenschaften 89:275–277

    Article  PubMed  CAS  Google Scholar 

  • Heim R (1977) Termites et champignons. Société nouvelle des Èditions Boubée, Paris

    Google Scholar 

  • Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53

    Article  PubMed  Google Scholar 

  • Hongoh Y, Ekpornprasit L, Inoue T et al (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516

    Article  PubMed  CAS  Google Scholar 

  • Hyodo F, Inoue T, Azuma JI et al (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658

    Article  CAS  Google Scholar 

  • Hyodo F, Tayasu I, Inoue T et al (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193

    Article  Google Scholar 

  • Johnson R (1981) Colony development and establishment of the fungus comb in Microtermes sp. nr usambaricus (Sjöstedt) (Isoptera: Macrotermitinae) from Nigeria. Insect Soc 28:3–12

    Article  Google Scholar 

  • Johnson RA, Thomas RJ, Wood TG, Swift MJ (1981) The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J Nat Hist 15:751–756

    Article  Google Scholar 

  • Ju Y-M, Hsieh H-M (2007) Xylaria species associated with nests of Odontotermes formosanus in Taiwan. Mycologia 99:936–957

    Article  PubMed  CAS  Google Scholar 

  • Katoh H, Miura T, Maekawa K et al (2002) Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Mol Ecol 11:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Kent DS, Simpson JA (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curculionidae). Naturwissenschaften 79:86–87

    Article  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bigby’s dictionary of the Fungi. CAB International, Wallingford

    Google Scholar 

  • Kirkendall LR, Kent DS, Raffa KF (1997) Interactions among males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behavior. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 181–215

    Google Scholar 

  • Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53:65–71

    Google Scholar 

  • Kost C, Lakatos T, Böttcher I et al (2007) Non-specific association between filamentous bacteria and fungus-growing ants. Naturwissenschaften 94:821–828

    Article  PubMed  CAS  Google Scholar 

  • Leuthold RH, Badertscher S, Imboden H (1989) The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Insect Soc 36:328–338

    Article  Google Scholar 

  • Little AEF, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant microbe symbiosis. Biol Lett 3:501–504

    Article  PubMed  Google Scholar 

  • Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222

    Article  PubMed  Google Scholar 

  • Mackenzie LM, Muigai AT, Osir EO et al (2007) Bacterial diversity in the intestinal tract of the fungus-cultivating termite Macrotermes michaelseni (Sjöstedt). Afr J Biotechnol 6:658–667

    CAS  Google Scholar 

  • Martin MM, Martin JS (1978) Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199:1453–1455

    Article  PubMed  CAS  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Mikheyev AS, Mueller UG, Abbot P (2006) Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci U S A 103:10702–10706

    Article  PubMed  CAS  Google Scholar 

  • Mikheyev AS, Mueller UG, Abbot P (2010) Evolution of the symbiosis between attine ants and their lepiotaceous cultivars. Am Nat 175:E126–E133

    Google Scholar 

  • Mikheyev AS, Mueller UG, Boomsma JJ (2007) Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol Ecol 16:209–216

    Article  PubMed  CAS  Google Scholar 

  • Moriya S, Inoue T, Ohkuma M (2005) Fungal community analysis of fungus gardens in termite nests. Microbes Environ 20:243–252

    Article  Google Scholar 

  • Mueller UG, Dash D, Rabeling C, Rodrigues A (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912

    Article  PubMed  CAS  Google Scholar 

  • Mueller UG, Gerardo N (2002) Fungus-farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci U S A 99:15247–15249

    Article  PubMed  CAS  Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595

    Article  Google Scholar 

  • Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038

    Article  PubMed  CAS  Google Scholar 

  • Mueller UG, Schultz TR, Cameron RC (2001) The origin of the attine ant-fungus mutualism. Q Rev Biol 76:169–197

    Article  PubMed  CAS  Google Scholar 

  • Munkacsi AB, Pan JJ, Villesen P (2004) Convergent coevolution in the domestication of coral mushrooms by fungus-growing ants. Proc R Soc Lond B 271:1777–1782

    Article  CAS  Google Scholar 

  • Nobre T, Eggleton P, Aanen DK (2010) Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc R Soc Lond B 277:359–365

    Article  CAS  Google Scholar 

  • O’Fallon B, Hansen T (2008) Population structure, levels of selection, and the evolution of intracellular symbionts. Evolution 62:361–373

    Article  PubMed  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    PubMed  CAS  Google Scholar 

  • Paul J, Saxena S, Varma A (1993) Ultrastructural studies of the termite (Odontotermes obesus) gut microflora and its cellulolytic properties. World J Microbiol Biotechnol 9:108–112

    Article  CAS  Google Scholar 

  • Pinto-Tomas AA, Anderson MA, Suen G et al (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Poulsen M, Boomsma JJ (2005) Mutualistic fungi control crop diversity in fungus-growing ants. Science 307:741–744

    Article  PubMed  CAS  Google Scholar 

  • Poulsen M, Fernández-Marín H, Currie CR, Boomsma JJ (2009) Ephemeral windows of opportunity for horizontal transmission of fungal symbionts in leaf-cutting ants. Evolution 63:2235–2247

    Article  PubMed  Google Scholar 

  • Reynolds HT, Currie CR (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959

    Article  PubMed  Google Scholar 

  • Richard F-J, Mora P, Errard C, Rouland C (2005) Digestive capacities of leaf-cutting ants and the contribution of their fungal cultivar to the degradation of plant material. J Comp Physiol B 175:297–303

    Article  PubMed  Google Scholar 

  • Rogers JD, Ju Y-M, Lehmann J (2005) Some Xylaria species on termite nests. Mycologia 97:914–923

    Article  PubMed  Google Scholar 

  • Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134

    Article  Google Scholar 

  • Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 289–306

    Google Scholar 

  • Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis. Kluwer Academic Publishers, Dordrecht, pp 731–756

    Google Scholar 

  • Rouland-Lefèvre C, Inoue T, Johjima T (2006) Termitomyces/termite interactions. In: König, H, Varma, A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 335–350

    Chapter  Google Scholar 

  • Rouland-Lefèvre C, Lenoir F, Lepage M (1991) The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comp Biochem Physiol 99A:657–663

    Article  Google Scholar 

  • Scharf M, Wu-Scharf D, Pittendrigh B, Bennett G (2003) Caste- and development-associated gene expression in a lower termite. Genome Biol 4:R62

    Article  PubMed  Google Scholar 

  • Scharf ME, Wu-Scharf D, Zhou X et al (2005) Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol Biol 14:31–44

    Article  PubMed  CAS  Google Scholar 

  • Schiött M, De Fine Licht H, Lange L, Boomsma J (2008) Towards a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants. BMC Microbiol 8:40

    Article  PubMed  CAS  Google Scholar 

  • Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci U S A 105:5435–5440

    Article  PubMed  CAS  Google Scholar 

  • Sen R, Ishak HD, Estrada D et al (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci U S A 106:17805–17810

    Article  PubMed  CAS  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem 71:906–915

    Article  PubMed  CAS  Google Scholar 

  • Shinzato N, Muramatsu M, Watanabe Y, Matsui T (2005) Termite-regulated fungal monoculture in fungus combs of a macrotermitine termite Odontotermes formosanus. Zool Sci 22:917–922

    Article  PubMed  CAS  Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp Biochem Physiol 103B:775–784

    CAS  Google Scholar 

  • Taylor PD, Frank SA (1996) How to make a kin selection model. J Theor Biol 180:27–37

    Article  PubMed  CAS  Google Scholar 

  • Thomas RJ (1987a) Distribution of Termitomyces and other fungi in the nests and major workers of several Nigerian Macrotermitinae. Soil Biol Biochem 19:335–341

    Article  Google Scholar 

  • Thomas RJ (1987b) Distribution of Termitomyces Heim and other fungi in the nests and major workers of Macrotermes bellicosus (Smeathman) in Nigeria. Soil Biol Biochem 19:29–333

    Google Scholar 

  • Thomas RJ (1987c) Distribution of Termitomyces Heim and other fungi in the nests and major workers of several Nigerian Macrotermitinae. Soil Biol Biochem 19:335–341

    Article  Google Scholar 

  • Thomas RJ (1987d) Factors affecting the distribution and activity of fungi in the nests of Macrotermitinae (Isoptera). Soil Biol Biochem 19:343–349

    Article  Google Scholar 

  • Todaka N, Moriya S, Saita K et al (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59:592–599

    Article  PubMed  CAS  Google Scholar 

  • Veivers PC, Mühlemann R, Slaytor M et al (1991) Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjøstedt. J Insect Physiol 37:675–682

    Article  CAS  Google Scholar 

  • Visser AA, Ros V, Beer ZWD et al (2009) Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach. Mol Ecol 18:553–567

    Article  PubMed  CAS  Google Scholar 

  • Vo TL, Mueller UG, Mikheyev AS (2009) Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia 101:206–210

    Article  PubMed  CAS  Google Scholar 

  • Walker TN, Hughes WOH (2009) Adaptive social immunity in leaf-cutting ants. Biol Lett 5:446–448

    Article  PubMed  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  • Weber NA (1972) Gardening ants: the attines. American Philosophical Society, Philadelphia, PA

    Google Scholar 

  • Wetterer JK (1994) Nourishment and evolution in fungus-growing ants and their fungi. In: Hunt, JH, Nalepa, CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 309–328

    Google Scholar 

  • Wilkinson DM (2001) At cross purposes. Nature 412:485–485

    Article  PubMed  CAS  Google Scholar 

  • Wilson EO (1980) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta): I. The overall pattern in A. sexdens. Behav Ecol Sociobiol 7:143–156

    Article  Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, UK, pp 245–292

    Google Scholar 

  • Yanagawa A, Yokohari F, Shimizu S (2008) Defense mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. J Invertebr Pathol 97:165–170

    Article  PubMed  Google Scholar 

  • Yara K, Jahana K, Hayashi H (1989) In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae: Macrotermitinae). Sociobiology 15:2247–2260

    Google Scholar 

  • Zhou X, Smith JA, Oi FM (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Nobre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Nobre, T., Rouland-Lefèvre, C., Aanen, D.K. (2010). Comparative Biology of Fungus Cultivation in Termites and Ants. In: Bignell, D., Roisin, Y., Lo, N. (eds) Biology of Termites: a Modern Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_8

Download citation

Publish with us

Policies and ethics