Skip to main content

Experimental Techniques for Excited State Characterisation

  • Chapter
  • First Online:
Applied Photochemistry

Abstract

The characterisation of the excited state of a molecule implies the determinations of the different quantum yields and lifetimes. Additionally, complex kinetic systems are frequently observed and need to be solved. In this contribution, we give our particular way of studying systems of organic molecules where we describe how a quantum yield of fluorescence (in fluid or rigid solution, or in film), phosphorescence, singlet oxygen and intersystem crossing can be experimentally determined. This includes a brief description of the equipments routinely used for these determinations. The interpretation of bi- and tri-exponential decays (associated with proton transfer, excimer/exciplex formation in the excited state) with the solution of kinetic schemes (with two and three excited species), and consequently the determination of the rate constants is also presented. Particular examples such as the excited state proton transfer in indigo (2-state system), the acid–base and tautomerisation equilibria in 7-hydroxy-4-methylcoumarin (3-state system), together with the classical examples of intramolecular excimer formation in 1,1’-dipyrenyldecane (2-state system) and 1,1’-dipyrenylpropane (3-state system) are given as illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As a general rule, the credibility of the results obtained from the analysis of fluorescence decays should be (with few exceptions) assessed, by checking the interconsistency of results obtained under different experimental conditions (temperature, solvent viscosity and/or polarity and concentration, among others, e.g. pressure). Changing temperature provides Arrhenius plots of the rate constants, which should be linear. Otherwise, something is wrong with the experiments, or something interesting/new is happening. Changing solvent viscosity (η) provides log–log plots of diffusion-dependent rate constants versus η, which should also be linear (slope = –1) for diffusion-controlled processes (deviations are also interesting) [5659]. Solvent polarity strongly affects charge and electron transfer processes in a well-known way. For inter-molecular processes, changing the concentration [Q] provides linear plots of the pseudo-unimolecular rate constant k 1 = k bimol[Q] and an accurate value for the bimolecular rate constant, k bimol.

    Finally, coupling results from time-resolved fluorescence with those obtained from steady-state experiments are essential in some cases (complex kinetics or low time resolution), and advisable in most other cases. For example, the rate constants obtained from time-resolved experiments can be used to evaluate Stern–Volmer or Stevens–Ban plots (see below) and compare them to those obtained from steady-state experiments. Agreement tells us that everything is alright, while disagreement means that something else is happening, as for example, undetectable short components in the decays (e.g., static quenching and transient effects, see below).

References

  1. Stern O, Volmer M (1919) Über die Abklingzeit der Fluoreszenz. Physikalische Zeitschrift 20:183–188

    CAS  Google Scholar 

  2. Murov S, Charmichael I, Hug GL (1993) Handbook of photochemistry. M Dekker Inc, New York

    Google Scholar 

  3. Karpovich DS, Blanchard GJ (1995) Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. J Phys Chem 99:3951–3958

    Article  CAS  Google Scholar 

  4. Bensasson RV, Land EJ, Truscott TG (1993) Excited states and free radicals in biology and medicine. Oxford Science Publications, Oxford

    Google Scholar 

  5. Rusakowi R, Testa AC (1968) Comparison of quinine bisulfate and 9,10-diphenylanthracene as fluorescence standards. J Phys Chem 72:793–796

    Article  Google Scholar 

  6. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  7. Montalti M, Credi A, Prodi L, Gandolfi M (2006) Handbook of photochemistry. 3rd edn. CRC Presss, Boca Raton

    Google Scholar 

  8. Parker CA, (1968) Photoluminescence of solutions. Elsevier, Amsterdam

    Google Scholar 

  9. deMello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9:230–233

    Article  CAS  Google Scholar 

  10. Palsson LO, Monkman AP (2002) Measurement of solid-state photoluminescence quantum yields using a fluorimeter. Adv Mater 14:757–758

    Article  CAS  Google Scholar 

  11. Pina J, Seixas de Melo J, Burrows HD et al (2008) Excited state properties of oligophenyl and oligothienyl swivel cruciforms. J Phys Chem B 112:1104–1111

    Article  CAS  Google Scholar 

  12. Pina J, Seixas de Melo J (2009) A comprehensive investigation of the electronic spectral and photophysical properties of conjugated naphthalene–thiophene oligomers. Phys Chem Chem Phys 11:8706–8713

    Article  CAS  Google Scholar 

  13. Kristiansen M, Scurlock RD, Iu KK, Ogilby PR (1991) Charge-transfer state and singlet oxygen (1Δg O2) production in photoexcited organic molecule-molecular oxygen complexes. J Phys Chem 95:5190–5197

    Article  CAS  Google Scholar 

  14. Martinez CG, Neumer A, Marti C et al (2003) Effect of the media on the quantum yield of singlet oxygen (O2(1Δg)) production by 9H-fluoren-9-one: solvents and solvent mixtures. Helv Chim Acta 86:384–397

    Article  CAS  Google Scholar 

  15. Carmichael I, Hug GL (1986) Triplet-triplet absorption spectra of organic molecules in condensed phases. J Phys Chem Ref Data 15:1–250

    Article  Google Scholar 

  16. Becker RS, Seixas de Melo J, Maçanita AL, Elisei F (1996) Comprehensive evaluation of the absorption, photophysical, energy transfer, structural, and theoretical properties of α-oligothiophenes with one to seven rings. J Phys Chem 100:18683–18695

    Article  CAS  Google Scholar 

  17. Kumar CV, Qin L, Das PK (1984) Aromatic thioketone triplets and their quenching behavior towards oxygen. J Chem Soc-Faraday Trans II 80:783–793

    Article  CAS  Google Scholar 

  18. Seixas de Melo J, Silva LM, Arnaut LG, Becker RS (1999) Singlet and triplet energies of α-oligothiophenes: a spectroscopic, theoretical, and photoacoustic study: extrapolation to polythiophene. J Chem Phys 111:5427–5434

    Article  Google Scholar 

  19. Pineiro M, Gonsalves A, Pereira MM et al (2002) New halogenated phenylbacteriochlorins and their efficiency in singlet-oxygen sensitization. J Phys Chem A 106:3787–3795

    Article  CAS  Google Scholar 

  20. Seixas de Melo J, Serpa C, Burrows HD, Arnaut LG (2007) The triplet state of indigo. Angew Chem Int Ed 46:2094–2096

    Article  CAS  Google Scholar 

  21. Seixas de Melo J, Moura AP, Melo MJ (2004) Photophysical and spectroscopic studies of indigo derivatives in their keto and leuco forms. J Phys Chem A 108:6975–6981

    Article  CAS  Google Scholar 

  22. Seixas de Melo J, Rondão R, Burrows HD et al (2006) Spectral and photophysical studies of substituted indigo derivatives in their keto forms. Chem Phys Chem 7:2303–2311

    Article  CAS  Google Scholar 

  23. Becker RS (1969) Theory and interpretation of fluorescence and phosphorescence. Wiley-Interscience, New York

    Google Scholar 

  24. Land EJ (1968) Extinction coefficients of triplet–triplet transitions. Proc Royal Soc Lond A 305:457–471

    Article  CAS  Google Scholar 

  25. Bensasson R, Land EJ (1971) Triplet-triplet extinction coefficients via energy transfer. Trans Faraday Soc 67:1904–1915

    Article  CAS  Google Scholar 

  26. Keene JP (1964) Pulse radiolysis equipment. J Sci Instrum 41:493–496

    Article  CAS  Google Scholar 

  27. Butler J, Hodgson BW, Hoey BM et al (1989) Experimental studies of some moderately fast processes initiated by radiation. Radiat Phys Chem 34:633–646

    Google Scholar 

  28. Monkman AP, Burrows HD, Miguel MD et al (2001) Triplet state spectroscopy of conjugated polymers studied by pulse radiolysis. Synth Met 116:75–79

    Article  CAS  Google Scholar 

  29. Cooper R, Thomas JK (1968) Formation of excited states in the nanosecond-pulse radiolysis of solutions of benzene and toluene. J Chem Phys 48:5097–6002

    Article  CAS  Google Scholar 

  30. Candeias LP, Wildeman J, Hadziioannou G, Warman JM (2000) Pulse radiolysis—optical absorption studies on the triplet states of p-phenylenevinylene oligomers in solution. J Phys Chem B 104:8366–8371

    Article  CAS  Google Scholar 

  31. Hoofman R, de Haas MP, Siebbeles LDA, Warman JM (1998) Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene). Nature 392:54–56

    Article  CAS  Google Scholar 

  32. Grozema FC, Siebbeles LDA, Warman JM et al (2002) Hole conduction along molecular wires: σ-bonded silicon versus π-bond-conjugated carbon. Adv Mater 14:228–231

    Article  CAS  Google Scholar 

  33. Burrows HD, Seixas de Melo J, Serpa C et al (2001) S1∼>T1 intersystem crossing in π-conjugated organic polymers. J Chem Phys 115:9601–9606

    Article  CAS  Google Scholar 

  34. Monkman AP, Burrows HD, Miguel MD et al (1999) Measurement of the S0–T1 energy gap in poly(2-methoxy,5-(2′-ethyl-hexoxy)–p-phenylenevinylene) by triplet–triplet energy transfer. Chem Phys Lett 307:303–309

    Article  CAS  Google Scholar 

  35. Pina J, Seixas de Melo J, Burrows HD et al (2009) Alternating binaphthyl—thiophene copolymers: synthesis, spectroscopy, and photophysics and their relevance to the question of energy migration versus conformational relaxation. Macromolecules 42:1710–1719

    Article  CAS  Google Scholar 

  36. Fonseca SM, Pina J, Arnaut LG et al (2006) Triplet-state and singlet oxygen formation in fluorene-based alternating copolymers. J Phys Chem B 110:8278–8283

    Article  CAS  Google Scholar 

  37. Maciejewski A, Steer RP (1993) The photophysics, physical photochemistry, and related spectroscopy of thiocarbonyls. Chem Rev 93:67–98

    Article  CAS  Google Scholar 

  38. Becker RS, Michl J (1966) Photochromism of synthetic and naturally occurring 2H-chromenes and 2H-pyrans. J Am Chem Soc 88(5931):5933

    Google Scholar 

  39. Becker RS, Dolan E, Balke DE (1969) Vibronic effects in photochemistry- competition between internal conversion and photochemistry. J Chem Phys 50:239–245

    Article  CAS  Google Scholar 

  40. Becker RS, Pelliccioli AP, Romani A et al (1999) Vibronic quantum effects in fluorescence and photochemistry. Competition between vibrational relaxation and photochemistry and consequences for photochemical control. J Am Chem Soc 121:2104–2109

    Article  CAS  Google Scholar 

  41. Becker RS, Favaro G, Romani A et al (2005) Vibronic effects in pathways of photochemistry and vibrational relaxation. Chem Phys 316:108–116

    Article  CAS  Google Scholar 

  42. Lenoble C, Becker RS (1986) Photophysics, photochemistry and kinetics of photochromic 2H-pyrans and chromenes. J Photochem 33:187–197

    Article  CAS  Google Scholar 

  43. Demas JN (1983) Excited state lifetime measurements. Academic Press, Inc, London

    Google Scholar 

  44. O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press, London

    Google Scholar 

  45. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer Academic, New York

    Book  Google Scholar 

  46. Zachariasse KA, Busse R, Schrader U et al (1982) Intramolecular siglet and triplet excimers with diphenanthrylpropanes. Chem Phys Lett 89:303–308

    Article  CAS  Google Scholar 

  47. Seixas de Melo J, Fernandes PF (2001) Spectroscopy and photophysics of 4- and 7-hydroxycoumarins and their thione analogs. J Mol Struct 565:69–78

    Article  Google Scholar 

  48. Maçanita AL, Costa FP, Costa S et al (1989) The 9-anthroate chromophore as a fluorescent probe for water. J Phys Chem 93:336–343

    Article  Google Scholar 

  49. Pina J, Seixas de Melo J, Burrows HD et al (2007) Spectral and photophysical studies of poly[2,6-(1,5-dioctylnaphthalene)]thiophenes. J Phys Chem C 111:7185–7191

    Article  CAS  Google Scholar 

  50. Striker G, Subramaniam V, Seidel CAM et al (1999) Photochromicity and fluorescence lifetimes of green fluorescent protein. J Phys Chem B 103:8612–8617

    Article  CAS  Google Scholar 

  51. Lima JC, Abreu I, Brouillard R, Maçanita AL (1998) Kinetics of ultra-fast excited state proton transfer from 7-hydroxy-4-methylflavylium chloride to water. Chem Phys Lett 298:189–195

    Article  CAS  Google Scholar 

  52. Boens N, Qin WW, Basaric N et al (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149

    Article  CAS  Google Scholar 

  53. Lampert RA, Chewter LA, Phillips D et al (1983) Standards for nanosecond fluorescence decay time measurements. Anal Chem 55:68–73

    Article  CAS  Google Scholar 

  54. Birks JB (1970) Photophysics of aromatic molecules. Wiley, London

    Google Scholar 

  55. Freitas AA, Quina FH, Fernandes AC, Maçanita AL (2010) Picosecond dynamics of the prototropic reactions of 7-hydroxyflavylium photoacids anchored at an anionic micellar surface. J Phys Chem A 114:4188–4196

    Article  CAS  Google Scholar 

  56. Stevens B, Ban MI (1964) Spectrophotometric determination of enthalpies and entropies of photoassociation for dissolved aromatic hydrocarbons. Trans Faraday Soc 60:1515–1523

    Article  CAS  Google Scholar 

  57. Boyce WE, DiPrima RC (1986) Elementary differential equations and boundary value problems, 4th edn. Wiley, New York

    Google Scholar 

  58. Zachariasse KA, Busse R, Duveneck G, Kühnle W (1985) Intramolecular monomer and excimer fluorescence with dipyrenylpropanes: double-exponential versus triple-exponential decays. J Photochem 28:237–253

    Article  CAS  Google Scholar 

  59. Zachariasse KA, Duveneck G, Kühnle W (1985) Double-exponential decay in intramolecular excimer formation: 1,3-di(2-pyrenyl)propane. Chem Phys Lett 113:337–343

    Article  CAS  Google Scholar 

  60. Zachariasse KA, Maçanita AL, Kühnle W (1999) Chain length dependence of intramolecular excimer formation with 1, n-bis(1-pyrenylcarboxy)alkanes for n = 1–16, 22, and 32. J Phys Chem B 103:9356–9365

    Article  CAS  Google Scholar 

  61. Serpa C, Gomes PJS, Arnaut LG et al (2006) Temperature dependence of ultra-exothermic charge recombinations. Chem Phys Chem 7:2533–2539

    Article  CAS  Google Scholar 

  62. Gordon M, Ware WR (1975) The exciplex. Academic Press, New York

    Google Scholar 

  63. Waluk J (2000) Conformational analysis of molecules in excited states. Wiley-VCH, New York

    Google Scholar 

  64. Becker HD (1993) Unimolecular photochemistry of anthracenes. Chem Rev 93:145–172

    Article  CAS  Google Scholar 

  65. Chandross EA, Thomas HT (1971) Intramolecular exciplex formation in naphthylalkylamines. Chem Phys Lett 9:393–396

    Article  CAS  Google Scholar 

  66. Hinatu J, Masuhara H, Mataga N et al (1978) Absorption spectra of inter- and intramolecular exciplex systems of pyrene and N, N-dimethylaniline in alcoholic solutions. Bull Chem Soc Jpn 51:1032–1036

    Article  CAS  Google Scholar 

  67. Itoh M, Mimura T, Usui H, Okamoto T (1973) Intramolecular exciplex and charge transfer complex formations in (9,10-dicyanoanthracene)-(trimethylene)-(naphthalene) systems. J Am Chem Soc 95:4388–4392

    Article  CAS  Google Scholar 

  68. Leinhos U, Kühnle W, Zachariasse KA (1991) Intramolecular charge transfer and thermal exciplex dissociation with p-aminobenzonitriles in toluene. J Phys Chem 95:2013–2021

    Article  CAS  Google Scholar 

  69. Swinnen AM, Vanderauweraer M, De Schryver FC et al (1987) Photophysics of the intramolecular exciplex formation in omega-(1-pyrenyl)-alpha-(dimethylamino)alkanes. J Am Chem Soc 109(321):330

    Google Scholar 

  70. Fajardo ME, Withnall R, Feld J et al (1988) Condensed phase laser induced harpoon reactions. Laser Chem 9:1–3

    Article  CAS  Google Scholar 

  71. Douhal A, Lahmani F, Zewail AH (1996) Proton-transfer reaction dynamics. Chem Phys 207:477–498

    Article  CAS  Google Scholar 

  72. Arnaut LG, Formosinho SJ (1993) Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions. J Photochem Photobiol A-Chem 75:1–20

    Article  CAS  Google Scholar 

  73. Laws WR, Brand L (1979) Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol. J Phys Chem 83:795–802

    Article  CAS  Google Scholar 

  74. Nunes RMD, Pineiro M, Arnaut LG (2009) Photoacid for extremely long-lived and reversible pH-jumps. J Am Chem Soc 131:9456–9462

    Article  CAS  Google Scholar 

  75. Aloisi GG, Latterini L, Maçanita AL et al (2003) Singlet and triplet state properties of substituted flavothiones. Phys Chem Chem Phys 5:69–3464

    Article  Google Scholar 

  76. Costa T, Pina J, de Seixas Melo J (2009) Photophysical processes in polymers and oligomers. Spec Period Rep Photochem 37:44–71

    Article  CAS  Google Scholar 

  77. Seixas de Melo J, Maçanita AL (1993) Three interconverting excited species: experimental study and solution of the general photokinetic triangle by time-resolved fluorescence. Chem Phys Lett 204:556–562

    Article  CAS  Google Scholar 

  78. Dias A, Varela AP, Miguel MD et al (1996) β-Carbolines. 2. Rate constants of proton transfer from multiexponential decays in the lowest singlet excited state of harmine in water as a function of pH. J Phys Chem 100:17970–17977

    Article  CAS  Google Scholar 

  79. Dias A, Varela AP, Miguel MD et al (1992) β -Carboline photosensitizers. 1. Photophysics, kinetics and excited-state equilibria in organic solvents, and theoretical calculations. J Phys Chem 96:10290–10296

    Article  CAS  Google Scholar 

  80. Seixas de Melo J, Costa T, Francisco A et al (2007) Dynamics of short as compared with long poly(acrylic acid) chains hydrophobically modified with pyrene, as followed by fluorescence techniques. Phys Chem Chem Phys 9:1370–1385

    Article  CAS  Google Scholar 

  81. Costa T, Miguel MG, Lindman B et al (2005) Dynamics and energetics of the self-assembly of a hydrophobically modified polyelectrolyte: naphthalene-labeled poly(acrylic acid). J Phys Chem B 109:11478–11492

    Article  CAS  Google Scholar 

  82. Dias FB, Lima JC, Pierola IF et al (2001) Internal dynamics of poly(methylphenylsiloxane) chains as revealed by picosecond time resolved fluorescence. J Phys Chem A 105:10286–10295

    Article  CAS  Google Scholar 

  83. Masuhara H, Tamai N, Mataga N et al (1983) Excimer formation in poly(N-vinylcarbazole) and its model compounds as revealed by picosecond time-resolved absorption spectroscopy. Chem Phys Lett 95:471–475

    Article  CAS  Google Scholar 

  84. Vandendriessche J, Palmans P, Toppet S et al (1984) Configurational and conformational aspects in the excimer formation of bis(carbazoles). J Am Chem Soc 106(8057):8064

    Google Scholar 

  85. Berberan-Santos MN, Bodunov EN, Valeur B (2005) Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential). Chem Phys 315:171182

    Article  Google Scholar 

  86. Webber SE (1990) Photon-harvesting polymers. Chem Rev 90:1469–1482

    Article  CAS  Google Scholar 

  87. Noronha M, Lima JC, Paci E et al (2007) Tracking local conformational changes of ribonuclease A using picosecond time-resolved fluorescence of the six tyrosine residues. Biophys J 92:4401–4414

    Article  CAS  Google Scholar 

  88. Noronha M, Santos R, Paci E et al (2009) Fluorescence lifetimes of tyrosine residues in cytochrome c′′ as local probes to study protein unfolding. J Phys Chem B 113:4466–4474

    Article  CAS  Google Scholar 

  89. Zachariasse KA, Striker G (1988) Three and only three excited-state species (one monomer and two excimers) in 1,3-di(1-pyrenyl)propane. Chem Phys Lett 145:251

    Article  CAS  Google Scholar 

  90. Liu YS, Ware WR (1993) Photophysics of polycyclic aromatic hydrocarbons adsorbed on silica gel surfaces. 1. Fluorescence lifetime distribution analysis: an ill-conditioned problem. J Phys Chem 97:5980–5986

    Article  CAS  Google Scholar 

  91. Dias FB, Knaapila M, Monkman AP, Burrows HD (2006) Fast and slow time regimes of fluorescence quenching in conjugated polyfluorene—fluorenone random copolymers: The role of exciton hopping and Dexter transfer along the polymer backbone. Macromol 39:1598–1606

    Article  CAS  Google Scholar 

  92. Dias FB, Kamtekar KT, Cazati T et al (2009) Exciton diffusion in polyfluorene copolymer thin films: kinetics, energy disorder and thermally assisted hopping. Chem Phys Chem 10:2096–2104

    Article  CAS  Google Scholar 

  93. Lakowicz JR, Johnson ML, Joshi N et al (1986) Transient effects in quenching detected by harmonic-content frequency-domain fluorometry. Chem Phys Lett 131:343–348

    Article  CAS  Google Scholar 

  94. Pina J, Seixas de Melo J, Batista RMF et al (2010) Synthesis and characterization of the ground and excited states of tripodal-like oligothienyl-imidazoles. J Phys Chem B 114:4964–4972

    Article  CAS  Google Scholar 

  95. Pina J, Seixas de Melo J, Burrows HD et al (2006) Spectral and photophysical studies on cruciform oligothiophenes in solution and the solid state. J Phys Chem B 110:15100–15106

    Article  CAS  Google Scholar 

  96. Zachariasse KA, Kühnle W, Leinhos U et al (1991) Time-resolved monomer and excimer fluorescence of 1,3-di(1-pyrenyl)propane at different temperatures: no evidence for distributions from picosecond laser experiments with nanosecond time resolution. J Phys Chem 95:5476–5488

    Article  CAS  Google Scholar 

  97. Zachariasse KA, Duveneck G, Kühnle W et al (1991) Multicomponent fluorescence decay analysis in intramolecular excimer formation with dipyrenylalkanes. In: Honda K (ed) Photophysical processes in organized molecular systems. Elsevier, Amsterdam, pp 83

    Google Scholar 

  98. Seixas de Melo J (2005) The influence of oxygen on the lifetime of luminescence probes. A simple device for degassing solutions for fluorescence experiments. Chem Educ 10:29–35

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sérgio Seixas de Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seixas de Melo, J.S., Pina, J., Dias, F.B., Maçanita, A.L. (2013). Experimental Techniques for Excited State Characterisation. In: Evans, R., Douglas, P., Burrow, H. (eds) Applied Photochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3830-2_15

Download citation

Publish with us

Policies and ethics