Skip to main content

Catalytic Carbon–Boron Bond Formation via Activation of Alkane C–H Bonds

  • Chapter
  • First Online:
Alkane C-H Activation by Single-Site Metal Catalysis

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 38))

Abstract

Alkanes are extremely unreactive toward nucleophiles and electrophiles because they are composed of nonpolar, strong, saturated C–H and C–C bonds. Thus, although they are abundant natural resources, alkanes are notoriously underutilized in chemical synthesis, and the selective functionalization of alkane to produce useful organic products is a major challenge in organic chemistry. Among different C–H functionalization methods of alkanes, transition metal-catalyzed functionalization has the selectivity advantage (tertiary C–H < secondary C–H < primary C–H bonds) and can afford more desirable terminally functionalized alkanes. Direct functionalization of the C–H bonds of alkanes to C–B bonds is a particularly attractive method because the boron moiety of alkane can be converted to a variety of functional groups using the rich chemistry of organoboron compounds. This chapter describes the development of direct borylation of alkane C–H bonds catalyzed by transitional metal complexes since 1995. The scope of the reaction, mechanistic understanding via computational studies and kinetic experiments, and challenges for broader applications in practical organic synthesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olah GA, Prakash GKS, Sommer J (1985) Superacids. Wiley, New York

    Google Scholar 

  2. Olah GA, Molnar A (1995) Hydrocarbon Chemistry. Wiley, New York

    Google Scholar 

  3. Labinger JA, Bercaw JE (2002) Nature 417:507–514

    Article  CAS  Google Scholar 

  4. Crabtree RH (2001) J Chem Soc Dalton Trans 2437–2450

    Google Scholar 

  5. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Acc Chem Res 28:154–162

    Article  CAS  Google Scholar 

  6. Sakakura T, Tanaka M (1987) J Chem Soc Chem Commun 758–759

    Google Scholar 

  7. Sakakura T, Sodeyama T, Sasaki K, Wada K, Tanaka MJ (1990) J Am Chem Soc 112:7221–7229

    Article  CAS  Google Scholar 

  8. Rosini GP, Zhu K, Goldman AS (1995) J Organomet Chem 504:115–121

    Article  CAS  Google Scholar 

  9. Crabtree RH, Mihelcic JM, Quirk JM (1979) J Am Chem Soc 101:7738–7740

    Article  CAS  Google Scholar 

  10. Jensen CM (1999) Chem Commun 2443–2449

    Google Scholar 

  11. Xu WW, Rosini GP, Gupta M, Jensen CM, Kaska WC, Krogh-Jespersen K, Goldman AS (1997) Chem Commun 2273–2274

    Google Scholar 

  12. Liu F, Goldman AS (1999) Chem Commun 655–656

    Google Scholar 

  13. Liu F, Pak EB, Singh B, Jensen CM, Goldman AS (1999) J Am Chem Soc 121:4086–4087

    Article  CAS  Google Scholar 

  14. Haenel MW, Oevers S, Angermund K, Kaska WC, Fan HJ, Hall MB (2001) Angew Chem Int Ed 40:3596–3600

    Article  CAS  Google Scholar 

  15. Ramachandran PV, Brown HC (eds) (2001) Organoboranes for syntheses American Chemical Society, Washington, vol. 783

    Google Scholar 

  16. Pelter A, Smith K, Brown HC (1988) Borane reagents. Academic, London

    Google Scholar 

  17. Ishiyama T, Miyaura N (2003) J Organomet Chem 680:3–11

    Article  CAS  Google Scholar 

  18. Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF (2010) Chem Rev 110:890–931

    Article  CAS  Google Scholar 

  19. Rablen PR, Hartwig JF (1996) J Am Chem Soc 118:4648–4653

    Article  CAS  Google Scholar 

  20. Sasaki S, Kikuno T (1997) Inorg Chem 36:226–229

    Article  Google Scholar 

  21. Waltz KM, He X, Muhoro C, Hartwig JF (1995) J Am Chem Soc 117:11357–11358

    Article  CAS  Google Scholar 

  22. Waltz KM, Hartwig JF (1997) Science 277:211–213

    Article  CAS  Google Scholar 

  23. Waltz KM, Hartwig JF (2000) J Am Chem Soc 122:11358–11369

    Article  CAS  Google Scholar 

  24. Webster CE, Fan Y, Hall MB, Kunz D, Hartwig JF (2003) J Am Chem Soc 125:858–859

    Article  CAS  Google Scholar 

  25. Lam WH, Lin Z (2003) Organometallics 22:473–480

    Article  CAS  Google Scholar 

  26. Chen H, Hartwig JF (1999) Angew Chem Int Ed 38:3391–3393

    Article  CAS  Google Scholar 

  27. Hoyano J, Graham W (1982) J Chem Soc Chem Commun 27–28

    Google Scholar 

  28. Chen H, Schlecht S, Semple TC, Hartwig JF (2000) Science 287:1995–1997

    Article  CAS  Google Scholar 

  29. Gibert TM, Hollander FJ, Bergman RG (1985) J Am Chem Soc 107:3508–3516

    Article  Google Scholar 

  30. Maitlis PM, Moseley K, Kang JW (1970) J Chem Soc A 2875–2883

    Google Scholar 

  31. Lenges CP, White PS, Brookhart M (1999) J Am Chem Soc 121:4385–4396

    Article  CAS  Google Scholar 

  32. Ruiz J, Mann BE, Spencer CM, Taylor BF, Maitlis PM (1987) J Chem Soc Dalton Trans 1963–1966

    Google Scholar 

  33. Bowyer WJ, Merkert JW, Geiger WE, Rheingod AL (1989) Organometallics 8:191–198

    Article  CAS  Google Scholar 

  34. Kawamura K, Hartwig JF (2001) J Am Chem Soc 123:8422–8423

    Article  CAS  Google Scholar 

  35. Tse MK, Cho JY, Smith MR III (2001) Org Lett 3:2831–2833

    Article  CAS  Google Scholar 

  36. Lawrence JD, Takahashi M, Bae C, Hartwig JF (2004) J Am Chem Soc 126:15334–15335

    Article  CAS  Google Scholar 

  37. Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan Y, Webster CE, Hall MB (2005) J Am Chem Soc 127:2538–2552

    Article  CAS  Google Scholar 

  38. Woodmansee DH, Bu X, Bazan GC (2001) Chem Commun 619–620

    Google Scholar 

  39. Murphy JM, Lawrence JD, Kawamura K, Incarvito C, Hartwig JF (2006) J Am Chem Soc 128:13684–13685

    Article  CAS  Google Scholar 

  40. Suzuki H, Omori H, Lee DH, Yoshida Y, Fukushima M, Tanaka M, Moro-oka Y (1994) Organometallics 13:1129–1146

    Article  CAS  Google Scholar 

  41. Wan X, Wang X, Luo Y, Takami S, Kubo M, Miyamoto A (2002) Organometallics 21:3703–3708

    Article  CAS  Google Scholar 

  42. Wei C, Jiménez-Hoyos CA, Videa MF, Hartwig JF, Hall MB (2010) J Am Chem Soc 132:3078–3091

    Article  CAS  Google Scholar 

  43. Shimada S, Batsanov AS, Howard JAK, Marder TB (2001) Angew Chem Int Ed 40:2168–2171

    Article  CAS  Google Scholar 

  44. Lam WH, Lam KC, Lin Z, Shimada S, Perutz R, Marder TB (2004) J Chem Soc Dalton Trans 1556–1562

    Google Scholar 

  45. Ishiyama T, Ishida K, Takagi J, Miyaura N (2001) Chem Lett 1082–1083

    Google Scholar 

  46. Mertins K, Zapf A, Beller M (2004) J Mol Catal A Chem 207:21–25

    Article  CAS  Google Scholar 

  47. Coates GW (2000) Chem Rev 100:1223–1252

    Article  CAS  Google Scholar 

  48. Imanishi Y, Naga N (2001) Prog Polym Sci 26:1147–1198

    Article  CAS  Google Scholar 

  49. Berkefeld A, Mecking S (2008) Angew Chem Int Ed 47:2538–2542

    Article  CAS  Google Scholar 

  50. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169–1203

    Article  CAS  Google Scholar 

  51. Boffa LS, Novak BM (2000) Chem Rev 100:1479–1493

    Article  CAS  Google Scholar 

  52. Chung TC (2002) Prog Polym Sci 27:39–85

    Article  CAS  Google Scholar 

  53. Yashuda H, Ihara E (1997) Adv Polym Sci 133:53–101

    Article  Google Scholar 

  54. Moad G (1999) Prog Polym Sci 24:81–142

    Article  CAS  Google Scholar 

  55. Boaen NK, Hillmyer MA (2005) Chem Soc Rev 34:267–275

    Article  CAS  Google Scholar 

  56. Kondo Y, Garcia-Cuadrado D, Hartwig JF, Boaen NK, Wagner NL, Hillmyer MA (2002) J Am Chem Soc 124:1164–1165

    Article  CAS  Google Scholar 

  57. Bae C, Hartwig JF, Boaen Harris NK, Long RO, Anderson KS, Hillmyer MA (2005a) J Am Chem Soc 127:767–776

    Article  CAS  Google Scholar 

  58. Bae C, Hartwig JF, Chung H, Harris NK, Switek KA, Hillmyer MA (2005b) Angew Chem Int Ed 44:6410–6413

    Article  CAS  Google Scholar 

  59. Shin J, Chang AY, Brownell LV, Racoma IO, Ozawa CH, Chung HY, Peng S, Bae C (2008) J Polym Sci Part A Polym Chem 46:3533–3545

    Article  CAS  Google Scholar 

  60. Jo TS, Yang M, Brownell LV, Bae C (2009) J Polym Sci Part A Polym Chem 47:4519–4531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges financial support from National Science Foundation and Nevada Renewable Energy Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulsung Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bae, C. (2012). Catalytic Carbon–Boron Bond Formation via Activation of Alkane C–H Bonds. In: Pérez, P. (eds) Alkane C-H Activation by Single-Site Metal Catalysis. Catalysis by Metal Complexes, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3698-8_3

Download citation

Publish with us

Policies and ethics