Skip to main content

Lung Recruitment and De-recruitment

  • Chapter
  • First Online:
Mechanics of Breathing

Abstract

Under normal conditions, a healthy lung is fully aerated, and no part will be airless or collapsed (or de-recruited). This is essential for optimum gas exchange, i.e., oxygenation of blood and removal of carbon dioxide (CO2) from the blood. Blood flow through an airless lung causes shunt, i.e., flow of blood that is not oxygenated and cannot eliminate CO2, resulting in hypoxemia and CO2 retention. De-recruitment can be seen in almost all patients during anesthesia and more so in acute lung injury (ALI) and as a complication in chronic obstructive lung disease. Airways close during a deep expiration and if lung volume is reduced by loss of respiratory muscle tone (anesthetics, sedatives, muscle relaxants), increased lung weight (edema in ALI), increased abdominal weight (obesity, abdominal edema), or increased gravitational forces (e.g., fighter pilots), alveolar gas will be adsorbed causing de-recruitment (atelectasis). Direct compression of lung may force gas out of the alveoli but may not be the most important mechanism. Reopening of the lung can be achieved by different recruitment maneuvers, balancing between the highest possible reopening and least possible damage to the lung, an issue that is not always met by full consensus. This makes lung recruitment a hot topic in research and clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lista G, Castoldi F, Cavigioli F, Bianchi S, Fontana P (2012) Alveolar recruitment in the delivery room. J Matern Fetal Neonatal Med 25:39–40

    Article  PubMed  Google Scholar 

  2. West JB, Wagner PD (1991) Ventilation-perfusion relationships. Raven Press, New York, pp 1289–1305

    Google Scholar 

  3. Hedenstierna G, Edmark L (2010) Mechanisms of atelectasis in the perioperative period. Best Pract Res Clin Anaesthesiol 24(2):157–169

    Article  PubMed  Google Scholar 

  4. Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164(9):1701–1711

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez-Roisin R, Roca J (1996) Update ‘96 on pulmonary gas exchange pathophysiology in pneumonia. Semin Respir Infect 11(1):3–12

    CAS  PubMed  Google Scholar 

  6. Ley-Zaporozhan J, Puderbach M, Kauczor H-U (2008) MR for the evaluation of obstructive pulmonary disease. Magn Reson Imaging Clin N Am 16(2):291–308, ix

    Article  PubMed  Google Scholar 

  7. Tacker WA, Balldin UI, Burton RR, Glaister DH, Gillingham KK, Mercer JR (1987) Induction and prevention of acceleration atelectasis. Aviat Space Environ Med 58(1):69–75

    PubMed  Google Scholar 

  8. Haswell MS, Tacker WA, Balldin UI, Burton RR (1986) Influence of inspired oxygen concentration on acceleration atelectasis. Aviat Space Environ Med 57(5):432–437

    CAS  PubMed  Google Scholar 

  9. Lee KF, Olak J (1994) Anatomy and physiology of the pleural space. Chest Surg Clin N Am 4(3):391–403

    CAS  PubMed  Google Scholar 

  10. Lai-Fook SJ, Rodarte JR (1991) Pleural pressure distribution and its relationship to lung volume and interstitial pressure. J Appl Physiol 70(3):967–978

    CAS  PubMed  Google Scholar 

  11. Milic-Emili J, Torchio R, D’Angelo E (2007) Closing volume: a reappraisal (1967-2007). Eur J Appl Physiol 99(6):567–583

    Article  PubMed  Google Scholar 

  12. Dantzker DR, Wagner PD, West JB (1974) Proceedings: instability of poorly ventilated lung units during oxygen breathing. J Physiol (Lond) 242(2):72P

    CAS  Google Scholar 

  13. Frumin MJ, Epstein RM, Cohen G (1959) Apneic oxygenation in man. Anesthesiology 20:789–798

    Article  CAS  PubMed  Google Scholar 

  14. Wollmer P, Schairer W, Bos JA, Bakker W, Krenning EP, Lachmann B (1990) Pulmonary clearance of 99mTc-DTPA during halothane anaesthesia. Acta Anaesthesiol Scand 34(7):572–575

    Article  CAS  PubMed  Google Scholar 

  15. Otis DR, Johnson M, Pedley TJ, Kamm RD (1993) Role of pulmonary surfactant in airway closure: a computational study. J Appl Physiol 75(3):1323–1333

    PubMed  Google Scholar 

  16. Oyarzun MJ, Iturriaga R, Donoso P, Dussaubat N, Santos M, Schiappacasse ME, Lathrop ME, Larrain C, Zapata P (1991) Factors affecting distribution of alveolar surfactant during resting ventilation. Am J Physiol 261(2):L210–L217

    CAS  PubMed  Google Scholar 

  17. Brismar B, Hedenstierna G, Lundquist H, Strandberg A, Svensson L, Tokics L (1985) Pulmonary densities during anesthesia with muscular relaxation–a proposal of atelectasis. Anesthesiology 62(4):422–428

    Article  CAS  PubMed  Google Scholar 

  18. Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G (1995) Reexpansion of atelectasis during general anaesthesia may have a prolonged effect. Acta Anaesthesiol Scand 39(1):118–125

    Article  CAS  PubMed  Google Scholar 

  19. Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158(1):3–11

    Article  CAS  PubMed  Google Scholar 

  20. Andersson LE, Bååth M, Thörne A, Aspelin P, Odeberg-Wernerman S (2005) Effect of carbon dioxide pneumoperitoneum on development of atelectasis during anesthesia, examined by spiral computed tomography. Anesthesiology 102(2):293–299

    Article  PubMed  Google Scholar 

  21. Strang CM, Freden F, Maripuu E, Hachenberg T, Hedenstierna G (2010) Ventilation-perfusion distributions and gas exchange during carbon dioxide-pneumoperitoneum in a porcine model. Br J Anaesth 105(5):691–697

    Article  CAS  PubMed  Google Scholar 

  22. Joyce CJ, Williams AB (1999) Kinetics of absorption atelectasis during anesthesia: a mathematical model. J Appl Physiol 86(4):1116–1125

    CAS  PubMed  Google Scholar 

  23. Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G (2003) Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 98(1):28–33

    Article  CAS  PubMed  Google Scholar 

  24. Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G (1995) Prevention of atelectasis during general anaesthesia [see comments]. Lancet 345(8962):1387–1391

    Article  CAS  PubMed  Google Scholar 

  25. Appelberg J, Pavlenko T, Bergman H, Rothen HU, Hedenstierna G (2007) Lung aeration during sleep. Chest 131(1):122–129

    Article  PubMed  Google Scholar 

  26. Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G (1993) Re-expansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth 71(6):788–795

    Article  CAS  PubMed  Google Scholar 

  27. Rausch SMK, Haberthur D, Stampanoni M, Schittny JC, Wall WA (2011) Local strain distribution in real three-dimensional alveolar geometries. Ann Biomed Eng 39(11):2835–2843

    Article  CAS  PubMed  Google Scholar 

  28. Ye H, Zhan Q, Ren Y, Liu X, Yang C, Wang C (2012) Cyclic deformation-induced injury and differentiation of rat alveolar epithelial type II cells. Respir Physiol Neurobiol 180(2):237–246

    Article  PubMed  Google Scholar 

  29. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149(5):1327–1334

    Article  CAS  PubMed  Google Scholar 

  30. Taskar V, John J, Evander E, Robertson B, Jonson B (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med 155(1):313–320

    Article  CAS  PubMed  Google Scholar 

  31. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110(5):556–565

    CAS  PubMed  Google Scholar 

  32. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99(5):944–952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Tschumperlin DJ, Oswari J, Margulies AS (2000) Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162(2):357–362

    Article  CAS  PubMed  Google Scholar 

  34. Otto CM, Markstaller K, Kajikawa O, Karmrodt J, Syring RS, Pfeiffer B, Good VP, Frevert CW, Baumgardner JE (2008) Spatial and temporal heterogeneity of ventilator-associated lung injury after surfactant depletion. J Appl Physiol 104(5):1485–1494

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tsuchida S, Engelberts D, Peltekova V, Hopkins N, Frndova H, Babyn P, McKerlie C, Post M, McLoughlin P, Kavanagh BP (2006) Atelectasis causes alveolar injury in nonatelectatic lung regions. Am J Respir Crit Care Med 174(3):279–289

    Article  PubMed  Google Scholar 

  36. Borges JB, Okamoto VN, Matos GFJ, Caramez MPR, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CSV, Carvalho CRR, Amato MBP (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174(3):268–278

    Article  PubMed  Google Scholar 

  37. Perlman CE, Bhattacharya J (2007) Alveolar expansion imaged by optical sectioning microscopy. J Appl Physiol 103(3):1037–1044

    Article  PubMed  Google Scholar 

  38. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–354

    Article  CAS  PubMed  Google Scholar 

  39. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282(1):54–61

    Article  CAS  PubMed  Google Scholar 

  40. Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34(5):1311–1318

    Article  PubMed  Google Scholar 

  41. Moran I, Zavala E, Fernandez R, Blanch L, Mancebo J (2003) Recruitment manoeuvres in acute lung injury/acute respiratory distress syndrome. Eur Respir J Suppl 42:37s–42s

    Article  CAS  PubMed  Google Scholar 

  42. Blanch L, Villagrá A (2004) Recruitment maneuvers might not always be appropriate in ARDS. Crit Care Med 32(12):2540–2541

    Article  PubMed  Google Scholar 

  43. Povoa P, Almeida E, Fernandes A, Mealha R, Moreira P, Sabino H (2004) Evaluation of a recruitment maneuver with positive inspiratory pressure and high PEEP in patients with severe ARDS. Acta Anaesthesiol Scand 48(3):287–293

    Article  CAS  PubMed  Google Scholar 

  44. Villagrá A, Ochagavía A, Vatua S, Murias G, Del Mar Fernández M, Lopez Aguilar J, Fernández R, Blanch L (2002) Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 165(2):165–170

    Article  PubMed  Google Scholar 

  45. Oczenski W, Hörmann C, Keller C, Lorenzl N, Kepka A, Schwarz S, Fitzgerald RD (2004) Recruitment maneuvers after a positive end-expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome. Anesthesiology 101(3):620–625

    Article  PubMed  Google Scholar 

  46. Pelosi P, Cadringher P, Bottino N, Panigada M, Carrieri F, Riva E, Lissoni A, Gattinoni L (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159(3):872–880

    Article  CAS  PubMed  Google Scholar 

  47. Foti G, Cereda M, Sparacino ME, De Marchi L, Villa F, Pesenti A (2000) Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med 26(5):501–507

    Article  CAS  PubMed  Google Scholar 

  48. Lapinsky SE, Aubin M, Mehta S, Boiteau P, Slutsky AS (1999) Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure. Intensive Care Med 25(11):1297–1301

    Article  CAS  PubMed  Google Scholar 

  49. Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Marco Ranieri V (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96(4):795–802

    Article  PubMed  Google Scholar 

  50. Medoff BD, Harris RS, Kesselman H, Venegas J, Amato MB, Hess D (2000) Use of recruitment maneuvers and high-positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit Care Med 28(4):1210–1216

    Article  CAS  PubMed  Google Scholar 

  51. de Matos GFJ, Stanzani F, Passos RH, Fontana MF, Albaladejo R, Caserta RE, Santos DCB, Borges JB, Amato MBP, Barbas CSV (2012) How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography. Crit Care 16(1):R4

    Article  PubMed Central  PubMed  Google Scholar 

  52. D’Angelo E, Calderini E, Robatto FM, Puccio P, Milic-Emili J (1997) Lung and chest wall mechanics in patients with acquired immunodeficiency syndrome and severe Pneumocystis carinii pneumonia. Eur Respir J 10(10):2343–2350

    Article  PubMed  Google Scholar 

  53. Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164(1):131–140

    Article  CAS  PubMed  Google Scholar 

  54. Yap DY, Liebkemann WD, Solway J, Gaver DP (1994) Influences of parenchymal tethering on the reopening of closed pulmonary airways. J Appl Physiol 76(5):2095–2105

    CAS  PubMed  Google Scholar 

  55. Takeuchi M, Goddon S, Dohlnikoff M, Shimaoka M, Hess D, Amato MBP, Kacmarek RM (2000) Determination of optimal PEEP level following recruitment maneuvers (RMs) in an ARDS sheep model (abstract). Am J Respir Crit Care Med 161(3):A48

    Google Scholar 

  56. Fujino Y, Goddon S, Dolhnikoff M, Hess D, Amato MB, Kacmarek RM (2001) Repetitive high-pressure recruitment maneuvers required to maximally recruit lung in a sheep model of acute respiratory distress syndrome. Crit Care Med 29(8):1579–1586

    Article  CAS  PubMed  Google Scholar 

  57. Borges JB, Carvalho CRR, Amato MBP (2006) Lung recruitment in patients with ARDS. N Engl J Med 355(3):319–320; author reply 321–322

    Article  CAS  PubMed  Google Scholar 

  58. Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P (2005) Assessing fluid-responsiveness by a standardized ventilatory maneuver: the respiratory systolic variation test. Anesth Analg 100(4):942–945

    Article  PubMed  Google Scholar 

  59. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent J-L (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31(4):517–523

    Article  PubMed  Google Scholar 

  60. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162(1):134–138

    Article  CAS  PubMed  Google Scholar 

  61. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159(3):935–939

    Article  CAS  PubMed  Google Scholar 

  62. Magder S (2004) Clinical usefulness of respiratory variations in arterial pressure. Am J Respir Crit Care Med 169(2):151–155

    Article  PubMed  Google Scholar 

  63. Odenstedt H, Aneman A, Kárason S, Stenqvist O, Lundin S (2005) Acute hemodynamic changes during lung recruitment in lavage and endotoxin-induced ALI. Intensive Care Med 31(1):112–120

    Article  PubMed  Google Scholar 

  64. Lim S–C, Adams AB, Simonson DA, Dries DJ, Broccard AF, Hotchkiss JR, Marini JJ (2004) Intercomparison of recruitment maneuver efficacy in three models of acute lung injury. Crit Care Med 32(12):2371–2377

    Article  PubMed  Google Scholar 

  65. Lim S–C, Adams AB, Simonson DA, Dries DJ, Broccard AF, Hotchkiss JR, Marini JJ (2004) Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Crit Care Med 32(12):2378–2384

    Article  PubMed  Google Scholar 

  66. Frank JA, McAuley DF, Gutierrez JA, Daniel BM, Dobbs L, Matthay MA (2005) Differential effects of sustained inflation recruitment maneuvers on alveolar epithelial and lung endothelial injury. Crit Care Med 33(1):181–188; discussion 254–255

    Article  PubMed  Google Scholar 

  67. Amato MBP, Marini JJ (1998) Barotrauma, volutrauma, and the ventilation of acute lung injury. In: Marini JJ, Slutsky AS, Lenfant C (eds) Physiological basis of ventilatory support, vol 118, 1st edn. Marcel Dekker, Inc, New York/Basel/Hong Kong, pp 1187–1245

    Google Scholar 

  68. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336

    Article  PubMed  Google Scholar 

  69. Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 26(8):1046–1056

    Article  CAS  PubMed  Google Scholar 

  70. Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby J-J (2004) Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 100(1):9–15

    Article  PubMed  Google Scholar 

  71. Rosenblum LJ, Mauceri RA, Wellenstein DE, Thomas FD, Bassano DA, Raasch BN, Chamberlain CC, Heitzman ER (1980) Density patterns in the normal lung as determined by computed tomography. Radiology 137(2):409–416

    CAS  PubMed  Google Scholar 

  72. Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, Rossi G, Fumagalli R, Marcolin R, Mascheroni D, Torresin A (1988) Relationship between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69(6):824–832

    Article  CAS  PubMed  Google Scholar 

  73. Lundquist H, Hedenstierna G, Strandberg A, Tokics L, Brismar B (1995) CT-assessment of dependent lung densities in man during general anaesthesia. Acta Radiol 36(6):626–632

    Article  CAS  PubMed  Google Scholar 

  74. Ranieri VM, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J (1994) Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: “occlusion” versus ‘constant flow’ technique. Am J Respir Crit Care Med 149(1):19–27

    Article  CAS  PubMed  Google Scholar 

  75. Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, Hedenstierna G, Slutsky AS, Ranieri VM (2004) Airway pressure–time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 32(4):1018–1027

    Article  PubMed  Google Scholar 

  76. Kaczka DW, Dellacá RL (2011) Oscillation mechanics of the respiratory system: applications to lung disease. Crit Rev Biomed Eng 39(4):337–359

    Article  PubMed Central  PubMed  Google Scholar 

  77. Dellacá RL, Andersson Olerud M, Zannin E, Kostic P, Pompilio PP, Hedenstierna G, Pedotti A, Frykholm P (2009) Lung recruitment assessed by total respiratory system input reactance. Intensive Care Med 35(12):2164–2172

    Article  PubMed  Google Scholar 

  78. Dellacá RL, Zannin E, Kostic P, Olerud MA, Pompilio PP, Hedenstierna G, Pedotti A, Frykholm P (2011) Optimisation of positive end-expiratory pressure by forced oscillation technique in a lavage model of acute lung injury. Intensive Care Med 37(6):1021–1030

    Article  PubMed  Google Scholar 

  79. Baumgardner JE, Markstaller K, Pfeiffer B, Doebrich M, Otto CM (2002) Effects of respiratory rate, plateau pressure, and positive end-expiratory pressure on PaO2 oscillations after saline lavage. Am J Respir Crit Care Med 166(12):1556–1562

    Article  PubMed  Google Scholar 

  80. Hartmann EK, Boehme S, Bentley A, Duenges B, Klein KU, Elsaesser A, Baumgardner JE, David M, Markstaller K (2012) Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model. Crit Care 16(1):R8

    Article  PubMed Central  PubMed  Google Scholar 

  81. Costa EL, Lima RG, Amato MB (2009) Electrical impedance tomography. Curr Opin Crit Care 15(1):18–24

    Article  PubMed  Google Scholar 

  82. Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169(7):791–800

    Article  PubMed  Google Scholar 

  83. Costa ELV, Borges JB, Melo A, Suarez-Sipmann F, Toufen C, Bohm SH, Amato MBP (2009) Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 35(6):1132–1137

    Article  PubMed  Google Scholar 

  84. Arbelot C, Ferrari F, Bouhemad B, Rouby J-J (2008) Lung ultrasound in acute respiratory distress syndrome and acute lung injury. Curr Opin Crit Care 14(1):70–74

    Article  PubMed  Google Scholar 

  85. Stefanidis K, Dimopoulos S, Tripodaki E-S, Vitzilaios K, Politis P, Piperopoulos P, Nanas S (2011) Lung sonography and recruitment in patients with early acute respiratory distress syndrome: a pilot study. Crit Care 15(4):R185

    Article  PubMed Central  PubMed  Google Scholar 

  86. Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby J-J (2011) Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med 183(3):341–347

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Hedenstierna MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Hedenstierna, G., Borges, J.B. (2014). Lung Recruitment and De-recruitment. In: Aliverti, A., Pedotti, A. (eds) Mechanics of Breathing. Springer, Milano. https://doi.org/10.1007/978-88-470-5647-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5647-3_8

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5646-6

  • Online ISBN: 978-88-470-5647-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics