Skip to main content

Respiratory Muscle Blood Flow Measured by Near-Infrared Spectroscopy (NIRS) and Indocyanine Green Dye (ICG)

  • Chapter
  • First Online:
Mechanics of Breathing

Abstract

The ability to measure intercostal muscle blood flow in humans has implications for understanding blood flow distribution patterns and circulatory regulation during exercise. Accordingly, the advantage of performing actual muscle blood flow measurements is that it provides an insight into the “blood flow competition” theory, based on which it is proposed that the respiratory muscles compete with the locomotor muscles for the available blood flow. Until very recently it was impossible to measure respiratory muscle blood flow in humans during exercise owing to several difficulties. Near-infrared spectroscopy (NIRS) combined with indocyanine green dye (ICG) is a new valid and minimally invasive technique for measuring respiratory muscle blood flow during exercise in humans allowing for continuous and variable frequency data collection. On the basis of tracer principles of mass conservation, the NIRS–ICG technique makes it possible to quantify blood flow because the rate of accumulation of ICG in a given tissue reflects perfusion in the specified tissue of interest. Respiratory muscle blood flow measurements by NIRS–ICG technique primarily reflect the internal and external intercostal muscles and only to a lesser extent the costal part of the diaphragm. However, while the diaphragm acts as the primary flow generator during exercise, the role of the intercostal muscles is also important as they develop the necessary pressure to move the rib cage. This chapter focuses on the intercostal muscle perfusion measured by the NIRS–ICG technique in healthy individuals and patients with chronic obstructive pulmonary disease (COPD) during exercise who often experience greater work of breathing than healthy subjects both at rest and during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubier M, Murciano D, Menu Y, Boczkowski J, Mal H, Pariente R (1989) Dopamine effects on diaphragmatic strength during acute respiratory failure in chronic obstructive pulmonary disease. Ann Intern Med 110:17–23

    Article  CAS  PubMed  Google Scholar 

  2. Manohar M (1990) Inspiratory and expiratory muscle perfusion in maximally exercised ponies. J Appl Physiol 68:544–548

    CAS  PubMed  Google Scholar 

  3. Manohar M (1988) Costal vs. crural diaphragmatic blood flow during submaximal and near-maximal exercise in ponies. J Appl Physiol 65:1514–1519

    CAS  PubMed  Google Scholar 

  4. Robertson CH Jr, Foster GH, Johnson RL Jr (1977) The relationship of respiratory failure to the oxygen consumption of, lactate production by, and distribution of blood flow among respiratory muscles during increasing inspiratory resistance. J Clin Invest 59:31–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jobsis F (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Google Scholar 

  6. Johnson RL Jr, Hsia CC, Takeda S, Wait JL, Glenny RW (2002) Efficient design of the diaphragm: distribution of blood flow relative to mechanical advantage. J Appl Physiol 93:925–930

    PubMed  Google Scholar 

  7. Manohar M (1986) Blood flow to the respiratory and limb muscles and to abdominal organs during maximal exertion in ponies. J Physiol 377:25–35

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Musch TI, Friedman DB, Pitetti KH, Haidet GC, Stray-Gundersen J, Mitchell JH, Ordway GA (1987) Regional distribution of blood flow of dogs during graded dynamic exercise. J Appl Physiol 63:2269–2277

    CAS  PubMed  Google Scholar 

  9. Chance B, Dait M, Zhang C, Hamaoka T, Hong L (1992) Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am J Physiol Cell Physiol 262:766–775

    Google Scholar 

  10. Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11:213–222

    Article  CAS  PubMed  Google Scholar 

  11. Boushel R, Pott F, Madsen P, Radegran G, Nowak M, Quistorff B, Secher N (1998) Muscle metabolism from near infrared spectroscopy during rhythmic handgrip in humans. Eur J Appl Physiol Occup Physiol 79:41–48

    Article  CAS  PubMed  Google Scholar 

  12. Hampson NB, Piantadosi CA (1988) Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia. J Appl Physiol 64:2449–2457

    CAS  PubMed  Google Scholar 

  13. Chiappa GR, Queiroga F Jr, Meda E, Ferreira LF, Diefenthaeler F, Nunes M, Vaz MA, Machado MC, Nery LE, Neder JA (2009) Heliox improves oxygen delivery and utilization during dynamic exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 179:1004–1010

    Article  PubMed  Google Scholar 

  14. Vogiatzis I, Athanasopoulos D, Habazettl H, Aliverti A, Louvaris Z, Cherouveim E, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2010) Intercostal muscle blood flow limitation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:1105–1113

    Article  PubMed  Google Scholar 

  15. Louvaris Z, Zakynthinos S, Aliverti A, Habazettl H, Vasilopoulou M, Andrianopoulos V, Wagner H, Wagner P, Vogiatzis I (2012) Heliox increases quadriceps muscle oxygen delivery during exercise in COPD patients with and without dynamic hyperinflation. J Appl Physiol 113:1012–1023

    Article  CAS  PubMed  Google Scholar 

  16. Foster GE, McKenzie DC, Milsom WK, Sheel AW (2005) Effects of two protocols of intermittent hypoxia on human ventilatory, cardiovascular and cerebral responses to hypoxia. J Physiol 567:689–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rostrup E, Law I, Pott F, Ide K, Knudsen GM (2002) Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans. Brain Res 954:183–193

    Article  CAS  PubMed  Google Scholar 

  18. Vogiatzis I, Louvaris Z, Habazettl H, Athanasopoulos D, Andrianopoulos V, Cherouveim E, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2011) Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes. J Physiol 589:4027–4039

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Vogiatzis I, Louvaris Z, Habazettl H, Andrianopoulos V, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2013) Cerebral cortex oxygen delivery and exercise limitation in patients with COPD. Eur Respir J 41:295–301

    Article  PubMed  Google Scholar 

  20. Boushel R, Langberg H, Green S, Skovgaard D, Bulow J, Kjaer M (2000) Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans. J Physiol 524:305–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kooijman HM, Hopman MT, Colier WN, van der Vliet JA, Oeseburg B (1997) Near infrared spectroscopy for noninvasive assessment of claudication. J Surg Res 72:1–7

    Article  CAS  PubMed  Google Scholar 

  22. Hanada A, Okita K, Yonezawa K, Ohtsubo M, Kohya T, Murakami T, Nishijima H, Tamura M, Kitabatake A (2000) Dissociation between muscle metabolism and oxygen kinetics during recovery from exercise in patients with chronic heart failure. Heart 83:161–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. McCully KK, Halber C, Posner JD (1994) Exercise-induced changes in oxygen saturation in the calf muscles of elderly subjects with peripheral vascular disease. J Gerontol 49:B128–B134

    Article  CAS  PubMed  Google Scholar 

  24. Wilson JR, Mancini DM, McCully K, Ferraro N, Lanoce V, Chance B (1989) Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation 80:1668–1674

    Article  CAS  PubMed  Google Scholar 

  25. Hamilton WF, Riley RL, Attyah AM, Cournand A, Fowell DM, Himmelatein A, Noble RP, Remington JW, Richards D, Wheeler NC, Witham AC (1948) Comparison of the Fick and dye injection methods of measuring the cardiac output in man. Am J Physiol 153:309–321

    CAS  PubMed  Google Scholar 

  26. Muckle TJ (1976) Plasma protein binding of indocyanine green. Biochem Med 15:17–21

    Article  CAS  PubMed  Google Scholar 

  27. Sapirstein LA (1956) Fractionation of the cardiac output of rats with isotopic potassium. Circ Res 4:689–692

    Article  CAS  PubMed  Google Scholar 

  28. Boushel R, Langberg H, Gemmer C, Olesen J, Crameri R, Scheede C, Sander M, Kjaer M (2002) Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise. J Physiol 543:691–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Guenette JA, Vogiatzis I, Zakynthinos S, Athanasopoulos D, Koskolou M, Golemati S, Vasilopoulou M, Wagner HE, Roussos C, Wagner PD, Boushel R (2008) Human respiratory muscle blood flow measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol 104:1202–1210

    Article  CAS  PubMed  Google Scholar 

  30. Vogiatzis I, Athanasopoulos D, Habazettl H, Kuebler W, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2009) Intercostal muscle blood flow limitation during exercise in trained athletes. J Physiol 587:3665–3677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cousins TR, O’Donnell JM (2004) Arterial cannulation: a critical review. AANA J 472:267–271

    Google Scholar 

  32. Habazettl H, Athanasopoulos D, Kuebler WM, Wagner H, Roussos C, Wagner PD, Ungruhe J, Zakynthinos S, Vogiatzis I (2010) Near-infrared spectroscopy and indocyanine green derived blood flow index for noninvasive measurement of muscle perfusion during exercise. J Appl Physiol 108:962–967

    Article  PubMed  Google Scholar 

  33. Bein B, Meybohm P, Cavus E, Tonner PH, Steinfath M, Scholz J, Doerges V (2006) A comparison of transcranial Doppler with near-infrared spectroscopy and indocyanine green during hemorrhagic shock: a prospective experimental study. Crit Care 10:R18

    Article  PubMed Central  PubMed  Google Scholar 

  34. Meybohm P, Hoffmann G, Renner J, Boening A, Cavus E, Steinfath M, Scholz J, Bein B (2008) Measurement of blood flow index during antegrade selective cerebral perfusion with near-infrared spectroscopy in newborn piglets. Anesth Analg 106:795–803

    Article  PubMed  Google Scholar 

  35. Terborg C, Bramer S, Harscher S, Simon M, Witte OW (2004) Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green. J Neurol Neurosurg Psychiatry 75:38–42

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Wagner BP, Gertsch S, Ammann RA, Pfenninger J (2003) Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow. Intensive Care Med 29:196–200

    PubMed  Google Scholar 

  37. Guenette JA, Henderson WR, Dominelli PB, Querido JS, Brasher PM, Griesdale DE, Boushel R, Sheel AW (2011) Blood flow index using near-infrared spectroscopy and indocyanine green as a minimally invasive tool to assess respiratory muscle blood flow in humans. Am J Physiol Regul Integr Comp Physiol 300:R984–R992

    Article  CAS  PubMed  Google Scholar 

  38. Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82:1573–1583

    CAS  PubMed  Google Scholar 

  39. Harms CA, Thomas A, Wetter J, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Hanson P, Dempsey JA (1998) Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J Appl Physiol 85:609–618

    CAS  PubMed  Google Scholar 

  40. Harms CA, Wetter TJ, Croix CM, Pegelow DF, Dempsey JA (2000) Effects of respiratory muscle work on exercise performance. J Appl Physiol 89:131–138

    CAS  PubMed  Google Scholar 

  41. Dempsey JA, Romer L, Rodman J, Miller J, Smith C (2006) Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol 151:242–250

    Article  PubMed  Google Scholar 

  42. Athanasopoulos D, Louvaris Z, Cherouveim E, Andrianopoulos V, Roussos C, Zakynthinos S, Vogiatzis I (2010) Expiratory muscle loading increases intercostal muscle blood flow during leg exercise in healthy humans. J Appl Physiol 109:388–395

    Article  PubMed Central  PubMed  Google Scholar 

  43. Borghi-Silva A, Carneiro Oliveira C, Carrascosa C, Maia J, Berton DC, Queiroga F Jr, Ferreira EMV, Ribeiro D, Nery LE, Neder JA (2008) Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax 63:910–915

    Article  CAS  PubMed  Google Scholar 

  44. Berton DC, Barbosa PB, Takara LS, Chiappa GR, Siqueira AC, Bravo DM, Ferreira LF, Neder JA (2010) Bronchodilators accelerate the dynamics of muscle O2 delivery and utilisation during exercise in COPD. Thorax 65:588–593

    Article  PubMed  Google Scholar 

  45. Vogiatzis I, Habazettl H, Aliverti A, Athanasopoulos D, Louvaris Z, Lo Mauro A, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2011) Effect of helium breathing on intercostal and quadriceps muscle blood flow during exercise in COPD patients. Am J Physiol Regul Intergr Comp Physiol 300:1549–1559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Vogiatzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Louvaris, Z., Zakynthinos, S., Vogiatzis, I. (2014). Respiratory Muscle Blood Flow Measured by Near-Infrared Spectroscopy (NIRS) and Indocyanine Green Dye (ICG). In: Aliverti, A., Pedotti, A. (eds) Mechanics of Breathing. Springer, Milano. https://doi.org/10.1007/978-88-470-5647-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5647-3_12

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5646-6

  • Online ISBN: 978-88-470-5647-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics