Skip to main content

Modellizzazione della mobilità urbana. Una nuova sfida per la teoria dei sistemi dinamici

  • Chapter
  • First Online:
Metodi e Modelli Matematici per le Dinamiche Urbane

Part of the book series: UNITEXT ((UNITEXTMAT,volume 128))

  • 314 Accesses

Abstract

Di recente lo studio della mobilità umana è diventato uno dei campi di ricerca più produttivi per la scienza dei Sistemi Complessi [16, 18, 2, 32, 6] dove le applicazioni di metodologie e tecniche matematiche della Fisica Statistica e dei Sistemi Dinamici Stocastici fanno fronte a problemi di Pianificazione Urbana e di Ingegneria dei Trasporti. Da un lato la complessità della società moderna, in cui le informazioni viaggiano attraverso nuove tecnologie di comunicazione, apre la strada alla possibilità di ottenere nuove soluzioni per la pianificazione di sistemi di trasporto, basate su un approccio interdisciplinare che comprende aspetti sociali e architettonici oltre a quelli tecnici dell’ingegneria [9]. Dall’altro lato le stesse tecnologie di comunicazione e informazione forniscono una quantità enorme di dati sulla mobilità individuale, per cui l’analisi e la modellizzazione richiedono nuovi strumenti matematici oltre che una nuova classe di modelli [17, 22, 7]. Ciò porta non solo a sviluppare una nuova Matematica, ma anche alla proposta di un linguaggio comune che permetta di comprendere i concetti matematici e condividerne i risultati all’interno di una più vasta comunità.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Riferimenti bibliografici

  1. L. Arnold. Random Dynamical Systems. Springer Berlin Heidelberg, 1998.

    Book  Google Scholar 

  2. P. Ball. The physical modelling of human social systems. Complexus, 1(4):190–206, 2003.

    Article  MathSciNet  Google Scholar 

  3. M. Bando, K. Hasebe, K. Nakanishi, and A. Nakayama. Analysis of optimal velocity model with explicit delay. Physical Review E, 58(5):5429–5435, nov 1998.

    Google Scholar 

  4. R. Barlovic, L. Santen, A. Schadschneider, and M. Schreckenberg. Metastable states in cellular automata for traffic flow. The European Physical Journal B, 5(3):793–800, oct 1998.

    Google Scholar 

  5. M. Batty. Agents, cells, and cities: New representational models for simulating multiscale urban dynamics. Environment and Planning A: Economy and Space, 37(8):1373–1394, aug 2005.

    Google Scholar 

  6. M. Batty. Cities and Complexity – Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. The MIT Press, Cambridge, MA, 2005.

    Google Scholar 

  7. A. Bazzani, B. Giorgini, and S. Rambaldi. Traffic and crowd dynamics: The physics of the city. In Encyclopedia of Complexity and Systems Science, pages 9411–9429. Springer New York, 2009.

    Google Scholar 

  8. A. Bazzani, B. Giorgini, F. Zanlungo, and S. Rambaldi. Cognitive dynamics in an automata gas. In R. Serra, M. Villani, and I. Poli, editors, Artificial Life and Evolutionary Computation, pages 3–19. World Scientific, nov 2009. Proceedings of Wivace 2008, Venice, Italy, 8 – 10 September 2008.

    Google Scholar 

  9. E. Cascetta. Transportation Systems Engineering: Theory and Methods. Springer US, 2001.

    Book  Google Scholar 

  10. P. Das, M. Parida, and V. K. Katiyar. Review of simulation techniques for microscopicmobility of pedestrian movement. Trends in Transport Engineering and Applications, 1(1):27–45, 2014.

    Google Scholar 

  11. J. M. del Castillo. Propagation of perturbations in dense traffic flow: a model and its implications. Transportation Research Part B: Methodological, 35(4):367–389, may 2001.

    Google Scholar 

  12. T. Domencich and D. L. MacFadden. Urban Travel Demand: A Behavioral Analysis. North-Holland Publishing Co., 1975. Reprinted 1996.

    Google Scholar 

  13. A. Einstein. Investigations on the Theory of Brownian Movement. Dover, 1956.

    MATH  Google Scholar 

  14. G. F. R. Ellis. Physics and the real world. Physics Today, 58(7):49–54, jul 2005.

    Google Scholar 

  15. N. Geroliminis and C. F. Daganzo. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological, 42(9):759–770, nov 2008.

    Google Scholar 

  16. B. Giorgini, A. Bazzani, and S. Rambaldi. Editorial. Advances in Complex Systems, 10(supp02):215–221, dec 2007.

    Google Scholar 

  17. D. Helbing. Traffic and related self-driven many-particle systems. Reviews of Modern Physics, 73(4):1067–1141, dec 2001.

    Google Scholar 

  18. D. Helbing, L. Buzna, A. Johansson, and T. Werner. Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transportation Science, 39(1):1–24, 2005.

    Article  Google Scholar 

  19. D. Helbing, I. J. Farkas, and T. Vicsek. Freezing by heating in a driven mesoscopic system. Physical Review Letters, 84(6):1240–1243, feb 2000.

    Google Scholar 

  20. D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber. Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transportation Research Part B: Methodological, 35(2):183–211, feb 2001.

    Google Scholar 

  21. D. Helbing and P. Molnár. Social force model for pedestrian dynamics. Physical Review E, 51(5):4282–4286, 1995.

    Article  Google Scholar 

  22. S. P. Hoogendoorn and P. H. L. Bovy. State-of-the-art of vehicular traffic flow modelling. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 215(4):283–303, jun 2001.

    Google Scholar 

  23. S. P. Hoogendoorn and P. H. L. Bovy. Pedestrian travel behavior modeling. Networks and Spatial Economics, 5(2):193–216, jun 2005.

    Google Scholar 

  24. Y. Igarashi, K. Itoh, K. Nakanishi, K. Ogura, and K. Yokokawa. Bifurcation phenomena in the optimal velocity model for traffic flow. Physical Review E, 64(4), sep 2001.

    Google Scholar 

  25. B. S. Kerner. The Physics of Traffic. Springer Berlin Heidelberg, 2004.

    Book  Google Scholar 

  26. B. S. Kerner and H. Rehborn. Experimental features and characteristics of traffic jams. Physical Review E, 53(2):R1297–R1300, feb 1996.

    Google Scholar 

  27. T. Kim and H. Zhang. A stochastic wave propagation model. Transportation Research Part B: Methodological, 42(7-8):619–634, aug 2008.

    Google Scholar 

  28. T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, and M. Schreckenberg. Experimental study of pedestrian counterflow in a corridor. Journal of Statistical Mechanics: Theory and Experiment, 2006(10):P10001–P10001, oct 2006.

    Google Scholar 

  29. M. Muramatsu, T. Irie, and T. Nagatani. Jamming transition in pedestrian counter flow. Physica A: Statistical Mechanics and its Applications, 267(3-4):487–498, may 1999.

    Google Scholar 

  30. R. Nagai, M. Fukamachi, and T. Nagatani. Experiment and simulation for counterflow of people going on all fours. Physica A: Statistical Mechanics and its Applications, 358(2-4):516–528, dec 2005.

    Google Scholar 

  31. K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic. Journal de Physique I, 2(12):2221–2229, dec 1992.

    Google Scholar 

  32. E. Omodei, A. Bazzani, S. Rambaldi, P. Michieletto, and B. Giorgini. The physics of the city: pedestrians dynamics and crowding panic equation in Venezia. Quality & Quantity, 48(1):347–373, oct 2012.

    Google Scholar 

  33. G. Orosz, R. E. Wilson, R. Szalai, and G. Stépán. Exciting traffic jams: Nonlinear phenomena behind traffic jam formation on highways. Physical Review E, 80(4), oct 2009.

    Google Scholar 

  34. G. Parisi. Complex systems: a physicist’s viewpoint. Physica A: Statistical Mechanics and its Applications, 263(1-4):557–564, feb 1999.

    Google Scholar 

  35. S. Tadaki, M. Kikuchi, M. Fukui, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida, and S. Yukawa. Phase transition in traffic jam experiment on a circuit. New Journal of Physics, 15(10):103034, oct 2013.

    Google Scholar 

  36. C. Van den Broeck. Stochastic thermodynamics: A brief introduction. Proceedings of the International School of Physics “Enrico Fermi”, 184(Physics of Complex Colloids):155–193, 2013.

    Google Scholar 

  37. T. van Gelder. The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21(5):615–628, oct 1998.

    Google Scholar 

  38. J. Walmsley. Emergence and reduction in dynamical cognitive science. New Ideas in Psychology, 28(3):274–282, dec 2010.

    Google Scholar 

  39. K. Yamori. Going with the flow: Micro–macro dynamics in the macrobehavioral patterns of pedestrian crowds. Psychological Review, 105(3):530–557, 1998.

    Article  Google Scholar 

  40. F. E. Yates, A. Garfinkel, D. O. Walter, and G. B. Yates, editors. Self-Organizing Systems. Springer US, 1987.

    Google Scholar 

  41. J. Zacharias. Pedestrian behavior and perception in urban walking environments. Journal of Planning Literature, 16(1):3–18, aug 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Bazzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag Italia S.r.l., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bazzani, A., Rambaldi, S., Giorgini, B. (2021). Modellizzazione della mobilità urbana. Una nuova sfida per la teoria dei sistemi dinamici. In: Albeverio, S., Giordano, P., Vancheri, A. (eds) Metodi e Modelli Matematici per le Dinamiche Urbane. UNITEXT(), vol 128. Springer, Milano. https://doi.org/10.1007/978-88-470-4008-3_16

Download citation

Publish with us

Policies and ethics