Skip to main content

Pointwise Convergence of Bochner–Riesz Means in Sobolev Spaces

  • Chapter
Trends in Harmonic Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 3))

Abstract

The Bochner–Riesz means are defined by the Fourier multiplier operators \((S_{R}^{\alpha}\ast f)\hat{\ }(\xi)=( 1-|R^{-1} \xi|^{2})^{\alpha}_{+}\hat{f}(\xi)\). Here we prove that if f has β derivatives in L p(R d), then \(S_{R}^{\alpha}\ast f(x)\) converges pointwise to f(x) as R→+∞ with a possible exception of a set of points with Hausdorff dimension at most dβp if one of the following conditions holds: either α>(d−1)|1/p−1/2|, or α>d(1/2−1/p)−1/2 and α+β⩾(d−1)/2. If β>d/p, then pointwise convergence holds everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carbery, A.: The boundedness of the maximal Bochner–Riesz operator on L 4(R 2). Duke Math. J. 50, 409–416 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carbery, A., Rubio de Francia, J.L., Vega, L.: Almost everywhere summability of Fourier integrals. J. Lond. Math. Soc. 38, 513–524 (1988)

    MATH  Google Scholar 

  3. Carbery, A., Soria, F.: Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an L 2-localisation principle. Rev. Mat. Iberoam. 4, 319–337 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carbery, A., Soria, F.: Set of divergence for the localization problem for Fourier integrals. C. R. Acad. Sci. Paris Sér. I Math. 325, 1283–1286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christ, M.: On almost everywhere convergence of Bochner–Riesz means in higher dimensions. Proc. Am. Math. Soc. 95, 16–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colzani, L.: Fourier expansions of functions with bounded variation of several variables. Trans. Am. Math. Soc. 358, 5501–5521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lee, S.: Improved bounds for Bochner–Riesz and maximal Bochner–Riesz operator. Duke Math. J. 122, 205–232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma, B.: Almost-everywhere convergence of Bochner–Riesz means in Bessel potential spaces. J. Approx. Theory Appl. 13, 13–18 (1997)

    MATH  Google Scholar 

  9. Montini, E.: On the capacity of sets of divergence associated with the spherical partial integral operator. Trans. Am. Math. Soc. 335, 1415–1441 (2002)

    MathSciNet  Google Scholar 

  10. Rubio de Francia, J.L.: Transference principles for radial multipliers. Duke Math. J. 58, 1–19 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1971)

    Google Scholar 

  12. Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  13. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  14. Tao, T.: On the maximal Bochner–Riesz conjecture in the plane for p<2. Trans. Am. Math. Soc. 354, 1947–1959 (2002)

    Article  MATH  Google Scholar 

  15. Volpi, S.: Bochner–Riesz means of eigenfunction expansions and local Hardy spaces on manifolds with bounded geometry. Ph.D. Thesis, Univ. Milano-Bicocca, Milano (2012)

    Google Scholar 

  16. Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Math., vol. 120. Springer, New York (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Volpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Colzani, L., Volpi, S. (2013). Pointwise Convergence of Bochner–Riesz Means in Sobolev Spaces. In: Picardello, M. (eds) Trends in Harmonic Analysis. Springer INdAM Series, vol 3. Springer, Milano. https://doi.org/10.1007/978-88-470-2853-1_7

Download citation

Publish with us

Policies and ethics