Skip to main content

Normal Findings from Different Radiopharmaceuticals and Techniques, with Variants and Pitfalls

  • Chapter
Radionuclide Imaging of Infection and Inflammation
  • 1679 Accesses

Abstract

The pharmacokinetic and/or pharmacodynamic pattern of radiopharmaceuticals in patients may be affected by several factors including a variety of drugs, disease states and, in some cases, surgical procedure [1]. Among the factors that can change radiopharmaceutical biodistribution, co-administration of interfering drugs is the most commonly reported occurrence [2]. Drug-radiopharmaceutical interactions may arise as a result of the mode of drug action, of physico-chemical interactions between drugs and radiotracers, and of competition for common binding sites [2–4]. Table 1.1 lists drugs that can interfere with the biodistribution of 67Ga-citrate, radiolabeled leukocytes and [18F]FDG in patients [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hesslewood S, Leung E (1994) Drug interaction with radiopharmaceuticals. Eur J Nucl Med 21:348–356.

    Article  PubMed  CAS  Google Scholar 

  2. Sampson CB (1990) Drugs and chemicals which affect the purity, biodistribution and pharmacokinetics of radiopharmaceuticals. J BiopharmSci 1:381–400.

    CAS  Google Scholar 

  3. Santos-Oliveira R, Machado M (2011) Pitfalls with radiopharmaceuticals. Am J Med Sci 342:50–53.

    Article  PubMed  Google Scholar 

  4. Spicer JA, Preston DF, Stephens R (1985) Adverse allergic reaction to technetium-99m methylene disphosphonate. J Nucl Med 26: 373–374.

    PubMed  CAS  Google Scholar 

  5. Schmidt KG, Rasmussen JW, Frederiksen PB et al (1990) Indium-111-granulocyte scintigraphy in brain abscess diagnosis: limitations and pitfalls. J Nucl Med 31:1121–1127.

    PubMed  CAS  Google Scholar 

  6. Gnanasegaran G, Cook G, Adamson K et al (2009) Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med 39:380–395.

    Article  PubMed  Google Scholar 

  7. Al-Enizi E, Kazem N, Owunwanne A et al (2003) Dextrose solutions yield radiopharmaceutical impurities: The’ sweet’ scans. J Nucl Med Technol 31:33–36.

    PubMed  CAS  Google Scholar 

  8. Saverymuttu SH, Peters AM, Danpure HJ et al (1983) Lung transit of 111-indium-labelled granulocytes: relationship to labelling techniques. Scand JHaematol 30:151–160.

    Article  CAS  Google Scholar 

  9. Love C, Tomas MB, Palestro CJ (2002) Pulmonary activity on labelled leukocyte images: patterns of uptake and their significance. Nucl Med Commun 23:559–563.

    Article  PubMed  CAS  Google Scholar 

  10. Hung JC, Ponto JA, Hammes RJ (1996) Radiopharmaceutical-related pitfalls and artifacts. Semin Nucl Med 26:208–255.

    Article  PubMed  CAS  Google Scholar 

  11. Roca M, de Vries EF, Jamar F (2010) Guidelines for the labelling of leucocytes with In111-oxine. Eur J Nucl Med Mol Imaging 37:835–841.

    Article  PubMed  Google Scholar 

  12. De Vries EF, Roca M, Jamar F et al (2010) Guidelines for the labeling of leucocytes with Tc99m-HMPAO. Eur J Nucl Med Mol Imaging 37:842–848.

    Article  PubMed  Google Scholar 

  13. Cordova MA, Hladik WB, Rhodes BA (1984) Validation and characterization of adverse reactions to radiopharmaceuticals. Noninv Med Imag 1:17–24.

    Google Scholar 

  14. Balan KK, Choudhary AK, Balan A et al (2003) Severe systemic reaction to 99mTc-methylene diphosphonate: a case report. J Nucl Med Tech 31:76–78.

    Google Scholar 

  15. Vidal MV, Gutfilen B, Barbosa-Da-Fonseca LM et al (1998) Influence of tobacco on the labelling of red blood cells and plasma proteins with technetium-99m. J Exp Clin Cancer Res 17:41–46.

    PubMed  CAS  Google Scholar 

  16. Laverman P, Bleeker-Rovers CP, Corstens FHM et al (2008) Development of infection and inflammation targeting compounds. In: Kairemo K, Bergström K (eds) The role of radiopharmaceuticals in drug discovery. Current Radiopharmaceuticals 1:42–48.

    Google Scholar 

  17. Wang X, Koch S (2009) Positron emission tomography/computed tomography potential pitfalls and artifacts. Curr Probl Diagn Radiol 38:156–169.

    Article  PubMed  Google Scholar 

  18. Dogan A, Rezai K (1993) Incidental lymph node visualisation on bone scan due to subcutaneous infiltration of Tc99m MDP. Clin Nucl Med 18:208–209.

    Article  PubMed  CAS  Google Scholar 

  19. Palestro CJ (1994) The current role of gallium imaging in infection. Semin Nucl Med 24:128–141.

    Article  PubMed  CAS  Google Scholar 

  20. Schuster DM, Alazraki N (2002) Gallium and other agents in diseases of the lung. Semin Nucl Med 32:193–211.

    Article  PubMed  Google Scholar 

  21. Love C, Palestro CJ (2010) Altered biodistribution and incidental findings on gallium and labeled leukocyte/bone marrow scans. Semin Nucl Med 40:271–282.

    Article  PubMed  Google Scholar 

  22. Connolly LP, Connolly SA (2003) Thymic uptake of radiopharmaceuticals. Clin Nucl Med 28:648–651.

    PubMed  Google Scholar 

  23. Ramsay SC, Yeates MG, Burke WM et al (1992) Quantitative pulmonary gallium scanning in interstitial lung disease. Eur J Nucl Med 19:80–85.

    Article  PubMed  CAS  Google Scholar 

  24. Desai AG, Intenzo C, Park C et al (1987) Drug-induced gallium uptake in the breasts. Clin Nucl Med 12:703–704.

    Article  PubMed  CAS  Google Scholar 

  25. Vazquez R, Oates E, Sarno RC et al (1988) Gallium-67 breast uptake in a patient with hypothalamic granuloma (sarcoid). J Nucl Med 29:118–121.

    PubMed  CAS  Google Scholar 

  26. Society of Nuclear Medicine Procedure Guideline for Gallium Scintigraphy in Inflammation Version 3.0, approved June 2, 2004.

    Google Scholar 

  27. Rossleigh MA, Murray IP, Mackey DW et al (1990) Pediatric solid tumors: Evaluation by gallium-67 SPECT studies. J Nucl Med 31:168–172.

    PubMed  CAS  Google Scholar 

  28. Hattner RS, White DL (1985) Gallium-67/stable gadolinium antagonism: MRI contrast agent markedly alters the normal biodistribution of gallium-67 J Nucl Med 31:1844–1846.

    Google Scholar 

  29. Hoffer P (1980) Gallium and infection. J Nucl Med 21:484–488.

    PubMed  CAS  Google Scholar 

  30. Hoffer PB, Samuel A, Bushberg JT et al (1979) Desferoxamine mesylate (Desferal): A contrast-enhancing agent for Ga-67 imaging. Radiology 131:775–779.

    PubMed  CAS  Google Scholar 

  31. Lentle BC, Jackson FI, McGowan DG (1976) Localization of gallium-67 citrate in salivary glands following radiation therapy. J Can Assoc Radiol 27:89–91.

    PubMed  CAS  Google Scholar 

  32. Yoshida S, Fukumoto M, Motohara T et al (1999) Ga-67 tumor scan in malignant diffuse mesothelioma-Comparison with CT and pathological findings. Ann Nucl Med 1:49–54.

    Article  Google Scholar 

  33. Fink G, Krelbaum T, Yellin A et al (2001) Pulmonary carcinoid: Presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest 6:1647–1651.

    Article  Google Scholar 

  34. Shiojima K, Tamaki Y, Hashida I et al (1996) Gallium-67 scintigraphy in evaluation of malignant lymphoma of the thyroid gland. Radiat Med 14:31–34.

    PubMed  CAS  Google Scholar 

  35. Yamamoto Y, Nishiyama Y, Kawasaki Y et al (1996) Evaluation of 99mTc-MIBI to predict chemotherapeutic response in patients with small cell lung carcinoma. Nippon Igaku Hoshasen Gakkai Zasshi 56:980–981.

    PubMed  CAS  Google Scholar 

  36. Lee VW, Fuller JD, O’Brien MJ et al (1991) Pulmonary Kaposi sarcoma in patients with AIDS: Scintigraphic diagnosis with sequential thallium and gallium scanning. Radiology 180:409–412.

    PubMed  CAS  Google Scholar 

  37. Moinuddin M, Rockett J (1986) Gallium scintigraphy in the detection of amiodarone lung toxicity. AJR Am J Roentgenol 147:607–609.

    PubMed  CAS  Google Scholar 

  38. van Rooij WJ, van der Meer SC, van Royen EA et al (1984) Pulmonary gallium-67 uptake in amiodarone pneumonitis. J Nucl Med 25:211–213.

    PubMed  Google Scholar 

  39. Richman SD, Levenson SM, Bunn PA et al (1975) 67Ga accumulation in pulmonary lesions associated with bleomycin toxicity. Cancer 36:1966–1972.

    Article  PubMed  CAS  Google Scholar 

  40. Garbes ID, Henderson ES, Gomez GA et al (1986) Procarbazine-induced interstitial pneumonitis with a normal chest x-ray: A case report. Med Pediatr Oncol 14:238–241.

    Article  PubMed  CAS  Google Scholar 

  41. MacMahon H, Bekerman C (1978) The diagnostic significance of gallium uptake in patients with normal chest radiographs. Radiology 127:189–193.

    Google Scholar 

  42. Crook MJ, Kaplan PD, Adatepe MH (1982) Gallium-67 scanning in nitrofurantoin-induced pulmonary reaction. J Nucl Med 23:690–692.

    PubMed  CAS  Google Scholar 

  43. Stein MG, DeMarco T, Gamsu G et al (1988) Computed tomography: Pathologic correlation in lung disease due to tocainide. Am Rev Respir Dis 137:458–460.

    PubMed  CAS  Google Scholar 

  44. Manning DM, Strirnlan CV, Turbiner EH (1980) Early detection of busulfan lung: Report of a case. Clin Nucl Med 5:412–414.

    Article  PubMed  CAS  Google Scholar 

  45. Lentle BC, Castor WR, Khaliq A et al (1975) The effect of contrast lymphangiography on localization of 67Ga-citrate. J Nucl Med 16:374–376.

    PubMed  CAS  Google Scholar 

  46. Kramer EL, Divgi CR (1991) Pulmonary applications of nuclear medicine. Clin Chest Med 12:55–75.

    PubMed  CAS  Google Scholar 

  47. Baughman RP, Fernandez M (1996) Radionuclide imaging in interstitial lung disease. Curr Opin Pulm Med 2:376–379.

    Article  PubMed  CAS  Google Scholar 

  48. Schiff RG, Kabat L, Kamani N (1987) Gallium scanning in lymphoid interstitial pneumonitis of children with AIDS. J Nucl Med 28:1915–1919.

    PubMed  CAS  Google Scholar 

  49. Nimkin K, Oates E (1989) Gallium-67 lung uptake in extrinsic hypersensitivity pneumonitis. Clin Nucl Med 14:451–452.

    Article  PubMed  CAS  Google Scholar 

  50. Brown DG, Aguirre A, Weaver A (1980) 67Gallium scanning in talcinduced pulmonary granulomatosis. Chest 77:561–565.

    Article  PubMed  CAS  Google Scholar 

  51. Hayes AA, Thickbroom GW, Guelfi GR et al (1990) Computer quantitation of gallium 67 lung uptake in crocidolite (blue asbestos) workers of Western Australia. Eur J Nucl Med 16:855–858.

    Article  PubMed  CAS  Google Scholar 

  52. Deseran MW, Colletti PM, Ratto D et al (1988) Chronic berylliosis. Demonstration by gallium-67 imaging and magnetic resonance imaging. Clin Nucl Med 13:509–511.

    CAS  Google Scholar 

  53. Kanner RE, Barkman HW, Rom WN et al (1985) Gallium-67 citrate imaging in underground coal miners. Am J Ind Med 8:49–55.

    Article  PubMed  CAS  Google Scholar 

  54. Siemsen JK, Grebe SF, Waxman AD (1978) The use of gallium-67 in pulmonary disorders. Semin Nucl Med 8:235–249.

    Article  PubMed  CAS  Google Scholar 

  55. Lin RY (1987) Severe spirometric defects in systemic lupus erythematosus. A possible role for bronchoalveolar lavage and gallium scanning. Clin Rheumatol 6:276–281.

    Article  PubMed  CAS  Google Scholar 

  56. Baron M, Feiglin D, Hyland R et al (1983) 67Gallium scans in progressive systemic sclerosis. Arthritis Rheum 26:969–974.

    Article  PubMed  CAS  Google Scholar 

  57. Yeh SD, White DA, Stuver-Pepe DE et al (1987) Abnormal gallium scintigraphy in pulmonary alveolar proteinosis (PAP). Clin Nucl Med 12:294–297.

    Article  PubMed  CAS  Google Scholar 

  58. Morals J, Carrier L, Gariepy G et al (1988) Gallium-67 pulmonary uptake in eosinophilic pneumonia. Clin Nucl Med 13:41–43.

    Article  Google Scholar 

  59. Widman D, Swayne LC, Rozan S (1988) Multicentric reticulo-histiocytosis: Assessment of pulmonary disease by gallium-67 scintigraphy. JRheumatol 15:132–135.

    CAS  Google Scholar 

  60. Alpert Li (1980) Pulmonary uptake of gallium-67 in Wegener’s granulomatusis. Clin Nucl Med 5:53–54.

    Article  PubMed  CAS  Google Scholar 

  61. Javaheri S, Levine BW, McKusick KA (1979) Serial 67Ga lung scanning in pulmonary eosinopbilic granuloma. Thorax 34:822–823.

    Article  PubMed  CAS  Google Scholar 

  62. Gnanasegaran G, Cook GJ, Fogelman I (2007) Musculoskeletal system In: Biersack HJ, Freeman LM (eds) Nuclear medicine concise. Springer, New York.

    Google Scholar 

  63. O’Connor MK, Brown ML, Hung JC et al (1991) The art of bone scintigraphy: Technical aspects. J Nucl Med 32:2332–2341.

    PubMed  Google Scholar 

  64. Storey G, Murray IPC (2004) Bone scintigraphy: The procedure and interpretation. In: Ell PJ, Gambhir SS (eds) Nuclear Medicine in Clinical Diagnosis and Treatment, Vol I. Churchill Livingstone, Elsevier, New York, pp 593–622.

    Google Scholar 

  65. Cook GJ, Fogelman I (2001) The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 31:206–211.

    Article  PubMed  CAS  Google Scholar 

  66. Cook GJ, Fogelman I (1999) Skeletal metastases from breast cancer: Imaging with nuclear medicine. Semin Nucl Med 29:69–79.

    Article  PubMed  CAS  Google Scholar 

  67. O’Sullivan JM, Cook GJ (2002) A review of the efficacy of bone scanning in prostate and breast cancer. Q J Nucl Med 46:152–159.

    PubMed  Google Scholar 

  68. Love C, Din AS, Tomas MB et al (2003) Radionuclide bone imaging: An illustrative review. Radiographics 23:341–358.

    Article  PubMed  Google Scholar 

  69. Fogelman I, McKillop JH, Gray HW (1983) The ‘hot patella’ sign: Is it of any clinical significance? Concise communication. J Nucl Med 24:312–315.

    PubMed  CAS  Google Scholar 

  70. Kipper MS, Alazraki NP, Feiglin DH (1982) The ‘hot’ patella. Clin Nucl Med 7:28–32.

    Article  PubMed  CAS  Google Scholar 

  71. Chu JY, Ho JE, Monteleone PL, O’Connor DM (1979) Technetium colloid bone marrow imaging in Fanconi’s anemia. Pediatrics 64:635–639.

    PubMed  CAS  Google Scholar 

  72. Milner PF, Brown M (1982) Bone marrow infarction in sickle cell anemia: correlation with hematologic profiles. Blood 60:1411–1419.

    PubMed  CAS  Google Scholar 

  73. Love C, Palestro CJ (2004) Radionuclide imaging of infection. J Nucl Med Technol 32:47–57.

    PubMed  Google Scholar 

  74. Love C, Tronco GG, Palestro CJ (2006) Imaging of infection and inflammation with 99mTc-Fanolesomab. Q J Nucl Med Mol Imaging 50:113–120.

    PubMed  CAS  Google Scholar 

  75. Gratz S, Braun HG, Behr TM et al (1997) Photopenia in chronic vertebral osteomyelitis with technetium-99m-antigranulocyte antibody (BW 250/183). J Nucl Med 38:211–216.

    PubMed  CAS  Google Scholar 

  76. Becker W, Dölkemeyer U, Gramatzki M et al (1993) Use of immunoscintigraphy in the diagnosis of FUO. 20:1078–1083.

    CAS  Google Scholar 

  77. Shanthly N, Aruva MR, Zhang K et al (2006) 99mTc-Falonesomab: affinity, pharmacokinetics and preliminary evaluation. Q J Nucl Med Mol Imaging 50:104–112.

    PubMed  CAS  Google Scholar 

  78. Thakur ML, Marcus CS, Henneman P et al (1996) Imaging inflammatory disease with neutrophil-specific technetium-99-m-labeled monoclonal antibody anti-SSEA-1. J Nucl Med 37:1789–1795.

    PubMed  CAS  Google Scholar 

  79. Mozley PD, Thakur ML, Alavi A et al (1999) Effects of a 99mTc-labeled murine immunoglobulin M antibody to CD15 antigens on human granulocyte membranes in healthy volunteers. J Nucl Med 40:2170–2114.

    Google Scholar 

  80. Mozley PD, Thakur ML, Alavi A et al (1999) Effects of a 99mTc-labeled murine immunoglobulin M antibody to CD 15 antigens on human granulocyte membranes in healthy volunteers. J Nucl Med 40:2170–2114.

    Google Scholar 

  81. Kumar V (2005) Radiolabeled white blood cells and direct targeting of micro-organisms for infection imaging. Q J Nucl Med Mol Imaging 49:325–338.

    PubMed  CAS  Google Scholar 

  82. Becker W, Repp R, Hansen HJ et al (1995) Binding characteristics and kinetics of a new Tc-99m-antigranulocyte Fab fragment (Leukoscan™). J Nucl Med 36:208P.

    Google Scholar 

  83. Quigley AM, Gnanasegaran G, Buscombe JR (2008) Technetium-99m-labelled sulesomab (LeukoScan) in the evaluation of soft tissue infections. Med Princ Pract 17:447–452.

    Article  PubMed  Google Scholar 

  84. Gratz S, Schipper ML, Dorner J et al (2003) LeukoScan for imaging infection in different clinical settings: a retrospective evaluation and extended review of the literature. Clin Nucl Med 28:267–276.

    PubMed  CAS  Google Scholar 

  85. Becker W (1995) The contribution of nuclear medicine to the patient with infection. Eur J Nucl Med 22:1195–1211.

    Article  PubMed  CAS  Google Scholar 

  86. Love C, Opoku-Agyemang P, Tomas MB et al (2002) Pulmonary activity on labeled leukocyte images: Physiologic, pathologic, and imaging correlation. Radiographics 22:1385–1393.

    Article  PubMed  Google Scholar 

  87. Coleman RE, Welch D (1980) Possible pitfalls with clinical imaging of indium-111 leukocytes: concise communication. J NucI Med 21:122–125.

    CAS  Google Scholar 

  88. Oates E, Staudinger K, Gilbertson V (1989) Significance of nodal uptake on indium 111 labeled leukocyte scans. Clin Nucl Med 14:282–285.

    Article  PubMed  CAS  Google Scholar 

  89. Williamson SL, Williamson MR, Seibert JJ et al (1987) Indium-111 leukocyte accumulation in submandibular gland saliva as a cause for false-positive gut uptake in children. Clin Nucl Med 12:867–868.

    Article  PubMed  CAS  Google Scholar 

  90. Palestro CJ, Finn C (1993) Indium-111 leukocyte imaging in Gaucher’s disease. J Nucl Med 34:818–820.

    PubMed  CAS  Google Scholar 

  91. Cook PS, Datz FL, Disbro MA (1984) Pulmonary uptake in indium-111 leukocyte imaging: clinical significance in patients with suspected occult infections. Radiology 150:557–5561.

    PubMed  CAS  Google Scholar 

  92. Palestro CJ, Love C, Bhargava KK (2009) Labeled leukocyte imaging: current status and future directions. Q J Nucl Med Mol Imaging 53:105–123.

    PubMed  CAS  Google Scholar 

  93. Miron S, Minotti A, Crass J (1992) Accumulation of In-111 tagged white blood cells in heterotopic new bone. Clin Nucl Med 17:972–973.

    Article  PubMed  CAS  Google Scholar 

  94. Kim EE, Pjura GA, Lowry PA et al (1987) Osteomyelitis complicating fracture: pitfalls of 111-In leukocyte scintigraphy. AJR Am J Roentgenol 148:927–930.

    PubMed  CAS  Google Scholar 

  95. Propst-Proctor SL, Dillingham MF, McDougall IR et al (1982) The white blood cell scan in orthopedics. Clin Orthop 168:157–165.

    PubMed  Google Scholar 

  96. Sfakianakis GN, Mnaymneh W, Ghandur-Mnaymneh L (1982) Positive indium-111 leukocytes scintigraphy in a skeletal metastasis. AJR Am J Roentgenol 139:601–603.

    PubMed  CAS  Google Scholar 

  97. Bellotti C, Aragno MG, Medina M et al (1986) Differential diagnosis of CT-hypodense cranial lesions with indium-111-oxine-labeled leukocytes. J Neurosurg 64:750–753.

    Article  PubMed  CAS  Google Scholar 

  98. Schmidt KG, Rasmussen JW, Frederiksen PB et al (1990) Indium-111-granulocyte scintigraphy in brain abscess diagnosis: limitations and pitfalls. J NucI Med 31:1121–1127.

    CAS  Google Scholar 

  99. Mok YP, Carney WH, Fernandez-Ulloa M (1984) Skeletal photopenic lesions in In-111 WBC imaging. J Nucl Med 25:1322–1326.

    PubMed  CAS  Google Scholar 

  100. Palestro CJ, Love C, Tronco GG et al (2006) Combined labeled leukocyte and technetium-99m sulfur colloid marrow imaging for diagnosing musculoskeletal infection: Principles, technique, interpretation, indications and limitations. Radiographics 26:859–870.

    Article  PubMed  Google Scholar 

  101. Palestro CJ, Kim CK, Swyer AJ et al (1991) Radionuclide diagnosis of vertebral osteomyelitis: Indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med 32:1861–1865.

    PubMed  CAS  Google Scholar 

  102. Palestro CJ, Kim CK, Vega A et al (1989) Acute effect of radiation therapy on indium-111 labeled leukocyte uptake in bone marrow. J Nucl Med 30:1889–1891.

    PubMed  CAS  Google Scholar 

  103. Palestro CJ, Love C, Tronco GG et al (2000) Role of radionuclide imaging in the diagnosis of postoperative infection. Radiographics 20:1649–1660.

    PubMed  CAS  Google Scholar 

  104. Society of Nuclear Medicine Procedure Guideline for 99mTc-exametazime (HMPAO)-labeled leukocyte scintigraphy for suspected infection/inflammation. Version 3.0, approved June 2, 2004

    Google Scholar 

  105. McAfee JG, Samin A (1985) In-111 labeled leukocytes: a review of problems in image interpretation. Radiology 155:221–229.

    PubMed  CAS  Google Scholar 

  106. Palestro CJ, Padilla ML, Swyer AJ et al (1992) Diffuse pulmonary uptake of indium-111-labeled leukocytes in drug-induced pneumonitis. J Nucl Med 33:1175–1177.

    PubMed  CAS  Google Scholar 

  107. Marinelli WA, Walker Smith GJ, Ingbar DH (1998) Inflammation and repair of the lung. In: Bone RC (eds) Pulmonary and critical care medicine. Mosby, St Louis, pp 1–6.

    Google Scholar 

  108. Girndt M, Kaul H, Leitnaker CK et al (2001) Selective sequestration of cytokine-producing monocytes during hemodialysis treatment. Am J Kidney Dis 37:954–963.

    Article  PubMed  CAS  Google Scholar 

  109. Palestro CJ, Goldsmith SJ (1995) The role of gallium and labeled leukocyte scintigraphy in the AIDS patient. Q J Nucl Med 39:221–230.

    PubMed  CAS  Google Scholar 

  110. Palestro CJ, Love C (2007) Radionuclide imaging of musculoskel-etal infection: Conventional agents. Semin Musculoskelet Radiol 11:335–352.

    Article  PubMed  Google Scholar 

  111. Sonmezoglu K, Sonmezoglu M, Halac M (2001) Usefulness of 99mTcciprofloxacin (infection) scan in diagnosis of chronic orthopedic infections: comparative study with 99mTc-HMPAO-leukocytescintigraphy. J Nucl Med 42:567–574.

    PubMed  CAS  Google Scholar 

  112. Shammas A, Lim R, Charron M (2009) Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics 29:1467–1486.

    Article  PubMed  Google Scholar 

  113. Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77.

    PubMed  CAS  Google Scholar 

  114. Strauss GJ (1996) Fluorine-18 deoxyglucose and false-positive results: A major problem in the diagnostics of oncological patients. Eur J Nucl Med 23:1409–1415.

    Article  PubMed  CAS  Google Scholar 

  115. Himms-Hagen J (1990) Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J 4:2890–2898.

    PubMed  CAS  Google Scholar 

  116. Abouzied MM, Crawford ES, Nabi HA (2005) 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 33:145–155.

    PubMed  Google Scholar 

  117. Cook GJ, Wegner EA, Fogelman I (2004) Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med 34:122–133.

    Article  PubMed  Google Scholar 

  118. Maurer AH, Burshteyn M, Adler LP et al (2011) How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT. Radiographics 31:1287–1305.

    Article  PubMed  Google Scholar 

  119. Patel PM, Alibazoglu H, Ali A et al (1996) Normal thymic uptake of FDG on PET imaging. Clin Nucl Med 21:772–775.

    Article  PubMed  CAS  Google Scholar 

  120. Hicks RJ, Binns D, Stabin MG (2001) Pattern of uptake and excretion of 18F-FDG in the lactating breast. J Nucl Med 42:1238–1242.

    PubMed  CAS  Google Scholar 

  121. Kitajima K, Nakamoto Y, Senda M (2007) Normal uptake of 18F-FDG in the testis: an assessment by PET/CT. Ann Nucl Med 21:405–410.

    Article  PubMed  Google Scholar 

  122. Liu Y, Ghesani NV, Zuckier LS (2010) Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy. Semin Nucl Med 40:294–315.

    Article  PubMed  Google Scholar 

  123. Vilain D, Bochet J, Le Stanc E (2010) Unsuspected hibernating myocardium detected by routine oncology 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 37:409.

    Article  PubMed  Google Scholar 

  124. Zanco P, Desideri A, Mobilia G et al (2000) Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. J Nucl Med 41:973–977.

    PubMed  CAS  Google Scholar 

  125. Zazulia AR, Videen TO, Powers WJ (2009) Transient focal increase in perihematomal glucose metabolism after acute human intracerebral hemorrhage. Stroke 40:1638–1643.

    Article  PubMed  CAS  Google Scholar 

  126. Akman CI, Ichise M, Olsavsky A et al (2010) Epilepsy duration impacts on brain glucose metabolism in temporal lobe epilepsy: results of voxel-based mapping. Epilepsy Behav 17:373–380.

    Article  PubMed  Google Scholar 

  127. Novak L, Emri M, Molnar P (2006) Regional cerebral 18FDG uptake during subarachnoid hemorrhage induced vasospasm. Neurol Res 28:864–870.

    Article  PubMed  Google Scholar 

  128. Weng JH, Lee JK, Wu MF et al (2011) Pituitary FDG uptake in a patient of lung cancer with bilateral adrenal metastases causing adrenal cortical insufficiency. Clin Nucl Med 36:731–732.

    Article  PubMed  Google Scholar 

  129. Poduri A, Golja A, Takeoka M et al (2007) Focal cortical malformations can show asymmetrically higher uptake on interictal fluorine-18 fluorodeoxyglucose positron emission tomography (PET). J Child Neurol 22:232–237.

    Article  PubMed  Google Scholar 

  130. Kostakoglu L, Hardoff R, Mirtcheva R et al (2004) PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics 24:1411–1431.

    Article  PubMed  Google Scholar 

  131. Poole DC, Kindig CA, Behnke BJ (2001) Effects of emphysema on diaphragm microvascular oxygen pressure. Am J Respir Crit Care Med 163:1081–1086.

    PubMed  CAS  Google Scholar 

  132. Bujenovic S, Mannting F, Chakrabarti R et al (2003) Artifactual 2-deoxy-2-18F-fluoro-D-glucose localization surrounding metallic objects in a PET/CT scanner using CT-based attenuation correction. Mol Imaging Biol 5:20–22.

    Article  PubMed  Google Scholar 

  133. Schiesser M, Stumpe KD, Trentz O (2003) Detection of metallic implant-associated infections with FDG PET in patients with trauma: correlation with microbiologic results. Radiology 226:391–398.

    Article  PubMed  Google Scholar 

  134. Goerres GW, Ziegler SI, Burger C (2003) Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 226:577–584.

    Article  PubMed  Google Scholar 

  135. Cohade C, Wahl RL (2003) Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-Clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med 33:228–237.

    Article  PubMed  Google Scholar 

  136. Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nuclear Med 45:82S–95S.

    Google Scholar 

  137. Kawano T, Suzuki A, Ishida A et al (2004) The clinical relevance of thymic fluorodeoxyglucose uptake in pediatric patients after chemotherapy. Eur J Nucl Med Mol Imaging 31:831–836.

    Article  PubMed  CAS  Google Scholar 

  138. Nakahara T, Fujii H, Ide M et al (2001) FDG uptake in the morphologically normal thymus: Comparison of FDG positron emission tomography and CT. Br J Radiol 74: 821–824.

    PubMed  CAS  Google Scholar 

  139. Alibazoglu H, Alibazoglu B, Hollinger E et al (1999) Normal thymic uptake of 2-deoxy-2[F-18]fluoro-D-glucose. Clin Nucl Med 24:597–600.

    Article  PubMed  CAS  Google Scholar 

  140. Brink I, Reinhardt MJ, Hoegerle S et al (2001) Increased metabolic activity in the thymus gland studied with 18F-FDG PET: Age dependency and frequency after chemotherapy. J Nucl Med 42:591–595.

    PubMed  CAS  Google Scholar 

  141. Burrell SC, Van den Abbeele AD (2005) 2-Deoxy-2-[F-18] fluoro-D-glucose-positron emission tomography of the head and neck: an atlas of normal uptake and variants. Mol Imaging Biol 7:244–256.

    Article  PubMed  Google Scholar 

  142. Grab D, Flock F, Stöhr I et al.(2000) Classification of asymptomatic adnexal masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gynecol Oncol 77: 454–459.

    Article  PubMed  CAS  Google Scholar 

  143. Kim EE, Chung SK, Haynie TP et al (1992) Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12:269–279.

    PubMed  CAS  Google Scholar 

  144. Greven KM, Williams DW 3rd, Keyes JW Jr et al (1994) Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation. Cancer 74:1355–1359.

    Article  PubMed  CAS  Google Scholar 

  145. Nakayama Y, Makino S, Fukuda Y et al (1996) Activation of lavage lymphocytes in lung injuries caused by radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 32:459–467.

    Article  Google Scholar 

  146. Shon IH, Fogelman I (2003) F-18 FDG positron emission tomography and benign fracture. Clin Nucl Med 28:171–175.

    PubMed  Google Scholar 

  147. Zhuang H, Sam JW, Chacko TK (2003) Rapid normalization of osseous FDG uptake following traumatic or surgical fractures. Eur J Nucl Med Mol Imaging 30:1096–1103.

    Article  PubMed  Google Scholar 

  148. De Winter F, Van de Wiele C, Vogelaers D (2001) Fluorine-18 fluorodeoxyglucose positron emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am 83:651–660.

    PubMed  Google Scholar 

  149. Gorospe L, Raman S, Echeveste J et al (2005) Whole-body PET/CT: spectrum of physiological variants, artifacts and interpretative pitfalls in cancer patients. Nucl Med Commun 26:671–687.

    Article  PubMed  Google Scholar 

  150. Liu Y (2009) Orthopedic surgery-related benign uptake on FDG-PET: case examples and pitfalls. Ann Nucl Med 23:701–708.

    Article  PubMed  Google Scholar 

  151. Zhuang H, Chacko TK, Hickeson M et al (2002) Persistent non-specific FDG uptake on PET imaging following hip arthroplasty. Eur J Nucl Med 29:1328–1333.

    Article  CAS  Google Scholar 

  152. Chacko TK, Zhuang H, Stevenson K et al (2002) The importance of the location of fluorodeoxyglucose uptake in periprosthetic infection in painful hip prostheses. Nucl Med Commun 23:851–855.

    Article  PubMed  CAS  Google Scholar 

  153. Nguyen BD, Ram PC, Roarke MC (2006) Hip anthroplasty with mass-like pelvic granulomatous disease: PET imaging. Clin Nucl Med 31:30–32.

    Article  PubMed  Google Scholar 

  154. Lim JW, Tang CL, Keng GH (2005) False positive F-18 fluorodeoxy-glucose combined PET/CT scans from suture granuloma and chronic inflammation: report of two cases and review of literature. Ann Acad Med Singap 34:457–462.

    PubMed  CAS  Google Scholar 

  155. Shon IH, O’Doherty MJ, Maisey MN (2002) Positron emission tomography in lung cancer. Semin Nucl Med 32:240–271.

    Article  PubMed  Google Scholar 

  156. Henry G, Garner WL (2003) Inflammatory mediators in wound healing. Surg Clin North Am 83:483–507.

    Article  PubMed  Google Scholar 

  157. Kazama T, Swanston N, Podoloff DA et al (2005) Effect of colonystimulating factor and conventional-or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 32:1406–1411.

    Article  PubMed  CAS  Google Scholar 

  158. Sugawara Y, Zasadny KR, Kison PV et al (1999) Splenic fluorodeoxyglucose uptake increased by granulocyte colony-stimulating factor therapy: PET imaging results. J Nucl Med 40:1456–1462.

    PubMed  CAS  Google Scholar 

  159. Alavi A, Gupta N, Alberini JL et al (2002) Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med 32:293–321.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annibale Versari .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Versari, A. (2013). Normal Findings from Different Radiopharmaceuticals and Techniques, with Variants and Pitfalls. In: Radionuclide Imaging of Infection and Inflammation. Springer, Milano. https://doi.org/10.1007/978-88-470-2763-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2763-3_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2762-6

  • Online ISBN: 978-88-470-2763-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics