Skip to main content

Newer Modalities for the Detection and Assessment of the Sentinel Lymph Node

  • Chapter
  • First Online:
Sentinel Node Biopsy in Breast Cancer

Abstract

The combination of radioactive colloid (RI, Tc99) with a blue dye (BD) for visual reference has traditionally been regarded as the gold standard for the mapping and identification of sentinel lymph nodes (SLNs), following the first landmark trials validating the outcomes of SLN biopsy (SLNB) [1–4]. The isotope is usually injected in the sub-areolar region or within the parenchyma around the tumour, a few hours before the operation. The BD is injected intra-operatively under anaesthesia, and the breast is massaged to facilitate tracer migration towards the axilla. The tracers reach the SLN via the lymphatic system. The SLN is then detected using a hand-held gamma probe or by following a blue lymphatic to a blue SLN. The procedure is conventionally considered complete when the residual gamma probe signal in the axilla is less than 10% of the maximum signal of the lymph node retrieved [4]. This technique results in detection rates as high as 99% with a false-negative rate of less than 5% and axillary recurrence rates lower than 2% [5–7]. The procedure is reasonably intuitive, is easy to standardise and has therefore gained wide acceptance. This combined technique over time has become the benchmark or the reference for SLNB procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Umberto V, et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med. 2003;349:546.

    Article  Google Scholar 

  2. Krag DN, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010;11:927–33.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mansel RE, et al. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC trial. J Natl Cancer Inst. 2006;98:599–609.

    Article  PubMed  Google Scholar 

  4. Krag D, et al. The sentinel node in breast cancer--a multicenter validation study. N Engl J Med. 1998;339:941–6.

    Article  CAS  PubMed  Google Scholar 

  5. Giuliano AE, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305:569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bergkvist L, Frisell J. Multicentre validation study of sentinel node biopsy for staging in breast cancer. Br J Surg. 2005;92:1221–4.

    Article  CAS  PubMed  Google Scholar 

  7. Donker M, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014;15:1303–10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. WHO. Breast cancer: prevention and control. WHO http://www.who.int/cancer/detection/breastcancer/en/.

  9. Barthelmes L, et al. Adverse reactions to patent blue V dye - the NEW START and ALMANAC experience. Eur J Surg Oncol. 2010;36:399–403.

    Article  CAS  PubMed  Google Scholar 

  10. Masannat Y, Shenoy H, Speirs V, Hanby A, Horgan K. Properties and characteristics of the dyes injected to assist axillary sentinel node localization in breast surgery. Eur J Surg Oncol. 2006;32:381–4.

    Article  CAS  PubMed  Google Scholar 

  11. Samorani D, et al. The use of indocyanine green to detect sentinel nodes in breast cancer: a prospective study. Eur J Surg Oncol J. 2015;41:64–70.

    Article  CAS  Google Scholar 

  12. Wishart GC, Loh S-W, Jones L, Benson JR. A feasibility study (ICG-10) of indocyanine green (ICG) fluorescence mapping for sentinel lymph node detection in early breast cancer. Eur J Surg Oncol. 2012;38:651–6.

    Article  CAS  PubMed  Google Scholar 

  13. Ballardini B, et al. The indocyanine green method is equivalent to the 99mTc-labeled radiotracer method for identifying the sentinel node in breast cancer: a concordance and validation study. Eur J Surg Oncol J. 2013;39:1332–6.

    Article  CAS  Google Scholar 

  14. Hojo T, Nagao T, Kikuyama M, Akashi S, Kinoshita T. Evaluation of sentinel node biopsy by combined fluorescent and dye method and lymph flow for breast cancer. Breast. 2010;19:210–3.

    Article  PubMed  Google Scholar 

  15. Murawa D, Hirche C, Dresel S, Hünerbein M. Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. Br J Surg. 2009;96:1289–94.

    Article  CAS  PubMed  Google Scholar 

  16. Polom K, Murawa D, Nowaczyk P, Rho YS, Murawa P. Breast cancer sentinel lymph node mapping using near infrared guided indocyanine green and indocyanine green--human serum albumin in comparison with gamma emitting radioactive colloid tracer. Eur J Surg Oncol. 2012;38:137–42.

    Article  CAS  PubMed  Google Scholar 

  17. Sugie T, et al. Evaluation of the clinical utility of the ICG fluorescence method compared with the radioisotope method for sentinel lymph node biopsy in breast cancer. Ann Surg Oncol. 2016;23:44–50.

    Article  PubMed  Google Scholar 

  18. Papathemelis T, et al. Sentinel lymph node biopsy in breast cancer patients by means of Indocyanine green using the Karl Storz VITOM® fluorescence camera. Biomed Res Int. 2018;2018:6251468.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chang YW, et al. Sentinel lymph node detection using fluorescein and blue light-emitting diodes in patients with breast carcinoma: a single-center prospective study. Asian J Surg. 2020;43:220–6.

    Article  PubMed  Google Scholar 

  20. Mazouni C, et al. Prospective evaluation of the limitations of near-infrared imaging in detecting axillary sentinel lymph nodes in primary breast cancer. Breast J. 2018;24:1006–9.

    Article  PubMed  Google Scholar 

  21. Tagaya N, et al. Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer. Am J Surg. 2008;195:850–3.

    Article  PubMed  Google Scholar 

  22. Toh U, et al. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer. Breast Cancer Res Treat. 2015;153:337–44.

    Article  CAS  PubMed  Google Scholar 

  23. Tong M, Guo W, Gao W. Use of fluorescence imaging in combination with patent blue dye versus patent blue dye alone in sentinel lymph node biopsy in breast cancer. J Breast Cancer. 2014;17:250–5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abe H, et al. Indocyanine green fluorescence imaging system for sentinel lymph node biopsies in early breast cancer patients. Surg Today. 2011;41:197–202.

    Article  CAS  PubMed  Google Scholar 

  25. He K, et al. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals. Transl Res J Lab Clin Med. 2016;178:74–80.

    CAS  Google Scholar 

  26. Liu J, Huang L, Wang N, Chen P. Indocyanine green detects sentinel lymph nodes in early breast cancer. J Int Med Res. 2017;45:514–24.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pitsinis V, Provenzano E, Kaklamanis L, Wishart GC, Benson JR. Indocyanine green fluorescence mapping for sentinel lymph node biopsy in early breast cancer. Surg Oncol. 2015;24:375–9.

    Article  PubMed  Google Scholar 

  28. Hokimoto N, et al. A novel color fluorescence navigation system for intraoperative transcutaneous lymphatic mapping and resection of sentinel lymph nodes in breast cancer: comparison with the combination of gamma probe scanning and visible dye methods. Oncology. 2018;94:99–106.

    Article  CAS  PubMed  Google Scholar 

  29. Guo W, et al. Breast cancer sentinel lymph node mapping using near-infrared guided indocyanine green in comparison with blue dye. Tumour Biol. 2014;35:3073–8.

    Article  CAS  PubMed  Google Scholar 

  30. Guo J, et al. Comparison of sentinel lymph node biopsy guided by indocyanine green, blue dye, and their combination in breast cancer patients: a prospective cohort study. World J Surg Oncol. 2017;15:196.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hirano A, et al. A comparison of indocyanine green fluorescence imaging plus blue dye and blue dye alone for sentinel node navigation surgery in breast cancer patients. Ann Surg Oncol. 2012;19:4112–6.

    Article  PubMed  Google Scholar 

  32. Schaafsma BE, et al. Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer. Br J Surg. 2013;100:1037–44.

    Article  CAS  PubMed  Google Scholar 

  33. Valente SA, et al. Near infrared fluorescent lymph node mapping with Indocyanine green in breast cancer patients: a prospective trial. J Am Coll Surg. 2019;228:672–8.

    Article  PubMed  Google Scholar 

  34. Vermersch C, Raia-Barjat T, Chapelle C, Lima S, Chauleur C. Randomized comparison between indocyanine green fluorescence plus 99mtechnetium and 99mtechnetium alone methods for sentinel lymph node biopsy in breast cancer. Sci Rep. 2019;9:6943.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shiozawa M, et al. Sentinel lymph node biopsy in patients with breast cancer using superparamagnetic iron oxide and a magnetometer. Breast Cancer. 2013;20:223–9.

    Article  PubMed  Google Scholar 

  36. Douek M, et al. Sentinel node biopsy using a magnetic tracer versus standard technique: the SentiMAG Multicentre Trial. Ann Surg Oncol. 2014;21:1237–45.

    Article  PubMed  Google Scholar 

  37. Rubio IT, et al. The superparamagnetic iron oxide is equivalent to the Tc99 radiotracer method for identifying the sentinel lymph node in breast cancer. Eur J Surg Oncol. 2015;41:46–51.

    Article  CAS  PubMed  Google Scholar 

  38. Thill M, et al. The Central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast. 2014;23:175–9.

    Article  PubMed  Google Scholar 

  39. Piñero-Madrona A, et al. Superparamagnetic iron oxide as a tracer for sentinel node biopsy in breast cancer: a comparative non-inferiority study. Eur J Surg Oncol. 2015;41:991–7.

    Article  PubMed  Google Scholar 

  40. Ghilli M, et al. The superparamagnetic iron oxide tracer: a valid alternative in sentinel node biopsy for breast cancer treatment. Eur J Cancer Care. 2017;26.

    Google Scholar 

  41. Karakatsanis A, et al. The Nordic SentiMag trial: a comparison of super paramagnetic iron oxide (SPIO) nanoparticles versus Tc(99) and patent blue in the detection of sentinel node (SN) in patients with breast cancer and a meta-analysis of earlier studies. Breast Cancer Res Treat. 2016;157:281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Houpeau J-L, et al. Sentinel lymph node identification using superparamagnetic iron oxide particles versus radioisotope: the French Sentimag feasibility trial. J Surg Oncol. 2016;113:501–7.

    Article  CAS  PubMed  Google Scholar 

  43. Coufal O, Fait V, Lžičařová E, Chrenko V, Žaloudík J. [SentiMag--the magnetic detection system of sentinel lymph nodes in breast cancer]. Rozhl V Chir Mesicnik Ceskoslovenske Chir Spolecnosti. 2015;94:283–8.

    Google Scholar 

  44. Alvarado MD, et al. SentimagIC: a non-inferiority trial comparing superparamagnetic iron oxide versus technetium-99m and blue dye in the detection of axillary sentinel nodes in patients with early-stage breast cancer. Ann Surg Oncol. 2019;26:3510–6.

    Article  PubMed  Google Scholar 

  45. Hamzah JL, et al. A pilot study comparing Sentimag/Sienna versus standard modality for sentinel lymph node identification in patients with breast cancer. Breast J. 2020;26:1074–7.

    Article  PubMed  Google Scholar 

  46. Taruno K, et al. Multicenter clinical trial on sentinel lymph node biopsy using superparamagnetic iron oxide nanoparticles and a novel handheld magnetic probe. J Surg Oncol. 2019;120:1391–6.

    Article  CAS  PubMed  Google Scholar 

  47. Rubio IT, Rodriguez-Revuelto R, Espinosa-Bravo M, Siso C, Rivero J, Esgueva A. A randomized study comparing different doses of superparamagnetic iron oxide tracer for sentinel lymph node biopsy in breast cancer: the SUNRISE study. Eur J Surg Oncol. 2020;46:2195–201.

    Article  PubMed  Google Scholar 

  48. Hersi AF, et al. Optimizing dose and timing in magnetic tracer techniques for sentinel lymph node detection in early breast cancers: the prospective multicenter Sentidose trial. Cancers. 2021;13:693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karakatsanis A, et al. Effect of preoperative injection of superparamagnetic iron oxide particles on rates of sentinel lymph node dissection in women undergoing surgery for ductal carcinoma in situ (SentiNot study). Br J Surg. 2019;106:720–8.

    Article  CAS  PubMed  Google Scholar 

  50. Pantiora E, et al. Evolution and refinement of magnetically guided sentinel lymph node detection in breast cancer: meta-analysis. Br J Surg. 2023;110:410. https://doi.org/10.1093/bjs/znac426.

    Article  PubMed  Google Scholar 

  51. Karakatsanis A, et al. Delayed sentinel lymph node dissection in patients with a preoperative diagnosis of ductal cancer in situ by preoperative injection with superparamagnetic iron oxide (SPIO) nanoparticles: The SentiNot Study. Ann Surg Oncol. 2023; https://doi.org/10.1245/s10434-022-13064-0. Epub ahead of print.

  52. Omoto K, et al. Sentinel node detection in breast cancer using contrast-enhanced sonography with 25% albumin--initial clinical experience. J Clin Ultrasound. 2006;34:317–26.

    Article  PubMed  Google Scholar 

  53. Li J, et al. How pre-operative sentinel lymph node contrast-enhanced ultrasound helps intra-operative sentinel lymph node biopsy in breast cancer: initial experience. Ultrasound Med Biol. 2019;45:1865–73.

    Article  PubMed  Google Scholar 

  54. Sever AR, et al. Preoperative localization of sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasonography in patients with breast cancer. Br J Surg. 2009;96:1295–9.

    Article  CAS  PubMed  Google Scholar 

  55. Omoto K, et al. Sentinel node detection method using contrast-enhanced ultrasonography with sonazoid in breast cancer: preliminary clinical study. Ultrasound Med Biol. 2009;35:1249–56.

    Article  PubMed  Google Scholar 

  56. Sever AR, et al. Preoperative sentinel node identification with ultrasound using microbubbles in patients with breast cancer. AJR Am J Roentgenol. 2011;196:251–6.

    Article  PubMed  Google Scholar 

  57. Sever AR, et al. Preoperative needle biopsy of sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasound in patients with breast cancer. AJR Am J Roentgenol. 2012;199:465–70.

    Article  PubMed  Google Scholar 

  58. Hu H, Wei W, Sun D, Liu Y. [Clinical application of sentinel lymph node biopsy under the guidance of contrast-enhanced ultrasound plus methylene blue in patients with breast cancer]. Zhonghua Yi Xue Za Zhi. 2013;93:1255–7.

    Google Scholar 

  59. Barentsz MW, et al. Sentinel lymph node localization with contrast-enhanced ultrasound and an I-125 seed: an ideal prospective development study. Int J Surg Lond. 2015;14:1–6.

    Article  CAS  Google Scholar 

  60. Matsuzawa F, et al. Accurate diagnosis of axillary lymph node metastasis using contrast-enhanced ultrasonography with Sonazoid. Mol Clin Oncol. 2015;3:299–302.

    Article  PubMed  Google Scholar 

  61. Xie F, et al. Intradermal microbubbles and contrast-enhanced ultrasound (CEUS) is a feasible approach for sentinel lymph node identification in early-stage breast cancer. World J Surg Oncol. 2015;13:319.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Eshefani, et al. Validation of contrast enhanced ultrasound technique to wire localization of sentinel lymph node in patients with early breast cancer. Indian J Surg Oncol. 2015;6. https://pubmed-ncbi-nlm-nih-gov.ezproxy.its.uu.se/27065663/?utm_source=gquery&utm_medium=referral&utm_campaign=CitationSensor.

  63. Rautiainen S, et al. Contrast-enhanced ultrasound -guided axillary lymph node core biopsy: diagnostic accuracy in preoperative staging of invasive breast cancer. Eur J Radiol. 2015;84:2130–6.

    Article  PubMed  Google Scholar 

  64. Britton P, et al. Microbubble detection and ultrasound-guided vacuum-assisted biopsy of axillary lymph nodes in patients with breast cancer. Clin Radiol. 2017;72:772–9.

    Article  CAS  PubMed  Google Scholar 

  65. Shimazu K, et al. Identification of sentinel lymph nodes by contrast-enhanced ultrasonography with Sonazoid in patients with breast cancer: a feasibility study in three hospitals. Cancer Med. 2017;6:1915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Y, et al. Variation of sentinel lymphatic channels (SLCs) and sentinel lymph nodes (SLNs) assessed by contrast-enhanced ultrasound (CEUS) in breast cancer patients. World J Surg Oncol. 2017;15:127.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cox K, et al. Enhanced pre-operative axillary staging using intradermal microbubbles and contrast-enhanced ultrasound to detect and biopsy sentinel lymph nodes in breast cancer: a potential replacement for axillary surgery. Br J Radiol. 2018;91:20170626.

    PubMed  PubMed Central  Google Scholar 

  68. Zhao J, et al. The value of contrast-enhanced ultrasound for sentinel lymph node identification and characterisation in pre-operative breast cancer patients: a prospective study. Eur Radiol. 2018;28:1654–61.

    Article  PubMed  Google Scholar 

  69. Zhong J, et al. Contrast-enhanced ultrasound-guided fine-needle aspiration for sentinel lymph node biopsy in early-stage breast cancer. Ultrasound Med Biol. 2018;44:1371–8.

    Article  PubMed  Google Scholar 

  70. Liu J, et al. Percutaneous contrast-enhanced ultrasound for localization and diagnosis of sentinel lymph node in early breast cancer. Sci Rep. 2019;9:13545.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dellaportas D, et al. Contrast-enhanced color Doppler ultrasonography for preoperative evaluation of sentinel lymph node in breast cancer patients. Breast Care. 2015;10:331–5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Saidha NK, Aggarwal R, Sen A. Identification of sentinel lymph nodes using contrast-enhanced ultrasound in breast cancer. Indian J Surg Oncol. 2018;9:355–61.

    Article  PubMed  Google Scholar 

  73. Mok CW, Tan S-M, Zheng Q, Shi L. Network meta-analysis of novel and conventional sentinel lymph node biopsy techniques in breast cancer. BJS Open. 2019;3:445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goyal A. New technologies for Sentinel lymph node detection. Breast Care. 2018;13:349–53.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Motomura K, Izumi T, Tateishi S, Tamaki Y, Ito Y, Horinouchi T, Nakanishi K. Superparamagnetic iron oxide-enhanced MRI at 3 T for accurate axillary staging in breast cancer. Br J Surg. 2016;103(1):60–9.

    Article  CAS  PubMed  Google Scholar 

  76. Jazrawi A, Pantiora E, Abdsaleh S, et al. Magnetic-Guided Axillary UltraSound (MagUS) Sentinel lymph node biopsy and mapping in patients with early breast cancer. a phase 2, single-arm prospective clinical trial. Cancers (Basel). 2021;13(17):4285. https://doi.org/10.3390/cancers13174285. Published 2021 Aug 25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature India Private Limited

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karakatsanis, A., Kothari, A. (2023). Newer Modalities for the Detection and Assessment of the Sentinel Lymph Node. In: Chintamani (eds) Sentinel Node Biopsy in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3994-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3994-9_8

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3992-5

  • Online ISBN: 978-81-322-3994-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics