Skip to main content

Abstract

Biomarker discovery has been one of the central foci of proteomic research globally. However, in developing countries, the road map to achieving this is not very straightforward. Biomarker post regulatory checks are often known to be sold at exorbitant prices in the markets. The ever-increasing cost of healthcare together with our improving understanding of biotech therapeutic drugs has fueled the rise of biosimilars. Biosimilars are defined as biotechnological products that have been proved to be comparable to an already approved reference product in quality, nonclinical, and clinical evaluation. Discussion and resolution of the various scientific and regulatory factors that play a role in approval of biosimilars are arguably one of the most significant events over the last decade for biotechnology. Key scientific factors include the complexity of biotech products and processes, use of complex raw materials that are not always well characterized, and our relatively limited understanding of how the numerous quality attributes that define a biotherapeutic impact the product’s safety and/or efficacy in the clinic. A key step toward achieving successful development of a biosimilar is to establish analytical comparability with the innovator drug. This is necessary for the biosimilar manufacturer to avail of the significant reduction in clinical data required for achieving regulatory approval. Proteomic-based analytical tools have played an important role and have gradually emerged as a major resource for characterization of analytical information to characterize these biosimilars, thereby playing a major role in the biosimilar revolution. This chapter addresses major developments that have taken place in the use of proteomics toward development of biosimilars with a focus on progress made in the last 5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdiche Y, Malashock D, Pinkerton A, Pons J (2008) Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem 377:209–217

    Article  CAS  PubMed  Google Scholar 

  • Ayoub D, Jabs W, Resemann A, Evers W, Evans C, Main L et al (2013) Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. MAbs 5:699–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay S, Mahajan M, Mehta T, Singh AK, Parikh A, Gupta AK et al (2015) Physicochemical and functional characterization of a biosimilar adalimumab ZRC-3197. Biosimilars 5:1–18

    CAS  Google Scholar 

  • Beck A, Sanglier-Cianférani S, Van Dorsselaer A (2012) Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal Chem 84:4637–4646

    Article  CAS  PubMed  Google Scholar 

  • Beck A, Diemer H, Ayoub D, Debaene F, Wagner-Rousset E, Carapito C et al (2013) Analytical characterization of biosimilar antibodies and Fc-fusion proteins. TrAC – Trends Anal Chem 48:81–95

    Article  CAS  Google Scholar 

  • Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Van Dorsselaer A et al (2015) Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. J Mass Spectrom 50:285–297

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz SA, Engen JR, Mazzeo JR, Jones GB (2012) Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 11:527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton DR, Dwek RA (2006) Immunology. Sugar determines antibody activity. Science 313:627–628

    Article  CAS  PubMed  Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  CAS  PubMed  Google Scholar 

  • Challener CA (2015) Ligand-binding assays and the determination of biosimilarity. Biopharm Int 28(1):36–39

    Google Scholar 

  • Champion K, Madden H, Dougherty J, Shacter E (2005) Defining your product profile and maintaining control over it, part 2. Bioprocess Int 3:52–57

    CAS  Google Scholar 

  • Chen SL, Wu SL, Huang LJ, Huang JB, Chen SH (2013) A global comparability approach for biosimilar monoclonal antibodies using LC-tandem MS based proteomics. J Pharm Biomed Anal 80:126–135

    Article  CAS  PubMed  Google Scholar 

  • Chirino AJ, Mire-Sluis A (2004) Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol 22:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Cottrell JS (2011) Protein identification using MS/MS data. J Proteomics 74:1842–1851

    Article  CAS  PubMed  Google Scholar 

  • Damen CWN, Chen W, Chakraborty AB, van Oosterhout M, Mazzeo JR, Gebler JC et al (2009) Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectrom 20:2021–2033

    Article  CAS  PubMed  Google Scholar 

  • Debaene F, Wagner-Rousset E, Colas O, Ayoub D, Corvaïa N, Van Dorsselaer A et al (2013) Time resolved native ion-mobility mass spectrometry to monitor dynamics of igg4 fab arm exchange and ‘bispecific’ monoclonal antibody formation. Anal Chem 85:9785–9792

    Article  CAS  PubMed  Google Scholar 

  • Doneanu CE, Xenopoulos A, Fadgen K, Murphy J, Skilton SJ, Prentice H et al (2012) Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two-dimensional liquid chromatography/mass spectrometry. MAbs 4:24–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Eon-Duval A, Broly H, Gleixner R (2012) Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 28:608–622

    Article  CAS  PubMed  Google Scholar 

  • Fornelli L, Ayoub D, Aizikov K, Beck A, Tsybin YO (2014) Middle-down analysis of monoclonal antibodies with electron transfer dissociation orbitrap fourier transform mass spectrometry. Anal Chem 86:3005–3012

    Article  CAS  PubMed  Google Scholar 

  • Goochee CF, Gramer MJ, Andersen DC, Bahr JB, Rasmussen JR (1991) The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (N Y) 9:1347–1355

    Article  CAS  Google Scholar 

  • Harvey SR, MacPhee CE, Barran PE (2011) Ion mobility mass spectrometry for peptide analysis. Methods 54:454–461

    Article  CAS  PubMed  Google Scholar 

  • Haselberg R, Brinks V, Hawe A, De Jong GJ, Somsen GW (2011) Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. Anal Bioanal Chem 400:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillenkamp F, Beavis RC, Brian T (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63:1193A–1203A

    Google Scholar 

  • Hirsch BR, Lyman GH (2014) Biosimilars: a cure to the U.S. health care cost conundrum? Blood Rev 28:263–268

    Article  PubMed  Google Scholar 

  • Hogwood CE, Bracewell DG, Smales CM (2014) Measurement and control of host cell proteins (HCPs) in CHO cell bioprocesses. Curr Opin Biotechnol 30C:153–160

    Article  Google Scholar 

  • Houde D, Peng Y, Berkowitz SA, Engen JR (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9:1716–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100:2071–2086

    Article  CAS  PubMed  Google Scholar 

  • Houel S, Hilliard M, Yu YQ, McLoughlin N, Martin SM, Rudd PM et al (2014) N-and O-glycosylation analysis of etanercept using liquid chromatography and quadrupole time-of-flight mass spectrometry equipped with electron-transfer dissociation functionality. Anal Chem 86:576–584

    Article  CAS  PubMed  Google Scholar 

  • Hulse J, Cox C (2013a) In vitro functional testing methods for monoclonal antibody biosimilars. Bioprocess Int 11:24–28

    Google Scholar 

  • Hulse J, Cox C (2013b) SPR & flow cytometry for biosimilars. Available at http://www.contractpharma.com/issues/2013-05/view_features/spr-flow-cytometry-for-biosimilars. Accessed on 30 May 2016

  • Jin M, Szapiel N, Zhang J, Hickey J, Ghose S (2010) Profiling of host cell proteins by two-dimensional difference gel electrophoresis (2D-DIGE): implications for downstream process development. Biotechnol Bioeng 105:306–316

    Article  CAS  PubMed  Google Scholar 

  • Kálmán-Szekeres Z, Olajos M, Ganzler K (2012) Analytical aspects of biosimilarity issues of protein drugs. J Pharm Biomed Anal 69:185–195

    Article  PubMed  Google Scholar 

  • Kaltashov IA, Bobst CE, Abzalimov RR (2013) Mass spectrometry-based methods to study protein architecture and dynamics. Protein Sci 22:530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann L, Pan J, Liu Y-H (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40:1224–1234

    Article  CAS  PubMed  Google Scholar 

  • Konermann L, Vahidi S, Sowole MA (2014) Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal Chem 86:213–232

    Article  CAS  PubMed  Google Scholar 

  • Kunkel JP, Jan DCH, Butler M, Jamieson JC (2000) Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors. Biotechnol Prog 16:462–470

    Article  CAS  PubMed  Google Scholar 

  • Laskay UA, Srzentić K, Monod M, Tsybin YO (2014) Extended bottom-up proteomics with secreted aspartic protease Sap9. J Proteomics 10:20–31

    Article  Google Scholar 

  • Levy NE, Valente KN, Choe LH, Lee KH, Lenhoff AM (2014) Identification and characterization of host cell protein product-associated impurities in monoclonal antibody bioprocessing. Biotechnol Bioeng 111:904–912

    Article  CAS  PubMed  Google Scholar 

  • Lew C, Gallegos-Perez J-L, Fonslow B, Lies M, Guttman A (2015) Rapid level-3 characterization of therapeutic antibodies by capillary electrophoresis electrospray ionization mass spectrometry. J Chromatogr Sci 53:443–449

    Article  CAS  PubMed  Google Scholar 

  • Lodowski DT, Palczewski K, Miyagi M (2010) Conformational changes in the G protein-coupled receptor rhodopsin revealed by histidine hydrogen-deuterium exchange. Biochemistry 49:9425–9427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez MF, Berggren K, Chernokalskaya E, Lazarev A, Robinson M, Patton WF (2000) A comparison of silver stain and SYPRO ruby protein gel stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis 21:3673–3683

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen K, van Duijn E (2010) Native mass spectrometry as a tool in structural biology. Curr Protoc Protein Sci 1–17

    Google Scholar 

  • Lynaugh H, Li H, Gong B (2013) Rapid Fc glycosylation analysis of Fc fusions with IdeS and liquid chromatography mass spectrometry. MAbs 5:641–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Morelle W, Michalski J-C (2007) Analysis of protein glycosylation by mass spectrometry. Nat Protoc 2:1585–1602

    Article  CAS  PubMed  Google Scholar 

  • Myszka DG, Rich RL (2000) Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Technol Today 3:310–317

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Borchers CH (2014) Top-down mass spectrometry and hydrogen/deuterium exchange for comprehensive structural characterization of interferons: implications for biosimilars. Proteomics 14:1249–1258

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Zhang S, Parker CE, Borchers CH (2014) Subzero temperature chromatography and top-down mass spectrometry for protein higher-order structure characterization: method validation and application to therapeutic antibodies. J Am Chem Soc 136:13065–13071

    Article  CAS  PubMed  Google Scholar 

  • Pritchard C, O’Connor G, Ashcroft AE (2013) The role of ion mobility spectrometry-mass spectrometry in the analysis of protein reference standards. Anal Chem 85:7205–7212

    Article  CAS  PubMed  Google Scholar 

  • Rathore AS (2009a) Follow-on protein products: scientific issues, developments and challenges. Trends Biotechnol 27:698–705

    Article  CAS  PubMed  Google Scholar 

  • Rathore AS (2009b) Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol 27:546–553

    Article  CAS  PubMed  Google Scholar 

  • Rathore AS, Bhambure R (2014) Establishing analytical comparability for ‘biosimilars’: filgrastim as a case study. Anal Bioanal Chem 406:6569–6576

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Mehta G, Srivastava S (2010) Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 10:731–748

    Article  CAS  PubMed  Google Scholar 

  • Rosati S, Yang Y, Barendregt A, Heck AJR (2014) Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry. Nat Protoc 9:967–976

    Article  CAS  PubMed  Google Scholar 

  • Schenauer MR, Flynn GC, Goetze AM (2012) Identification and quantification of host cell protein impurities in biotherapeutics using mass spectrometry. Anal Biochem 428:150–157

    Article  CAS  PubMed  Google Scholar 

  • Schenauer MR, Flynn GC, Goetze AM (2013) Profiling the effects of process changes on residual host cell proteins in biotherapeutics by mass spectrometry. Biotechnol Prog 29:951–957

    Article  CAS  PubMed  Google Scholar 

  • Singleton CA (2014) MS in the analysis of biosimilars. Bioanalysis 6:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Srgel F, Lerch H, Lauber T (2010) Physicochemical and biologic comparability of a biosimilar granulocyte colony-stimulating factor with its reference product. BioDrugs 24:347–357

    Article  Google Scholar 

  • Tait AS, Hogwood CEM, Smales CM, Bracewell DG (2012) Host cell protein dynamics in the supernatant of a mAb producing CHO cell line. Biotechnol Bioeng 109:971–982

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Sundaram S, Zhang J, Carlson P, Matathia A, Parekh B et al (2013) Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry. MAbs 5:114–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson JH, Chung WK, Zhu M, Tie L, Lu Y, Aboulaich N et al (2014) Improved detection of host cell proteins (HCPs) in a mammalian cell-derived antibody drug using liquid chromatography/mass spectrometry in conjunction with an HCP-enrichment strategy. Rapid Commun Mass Spectrom 28:855–860

    Article  CAS  PubMed  Google Scholar 

  • Vahidi S, Stocks BB, Konermann L (2013) Structure in the gas phase. Anal Chem 85:10471–10478

    Article  CAS  PubMed  Google Scholar 

  • Velez-Suberbie ML, Tarrant RDR, Tait AS, Spencer DIR, Bracewell DG (2013) Impact of aeration strategy on CHO cell performance during antibody production. Biotechnol Prog 29:116–126

    Article  CAS  PubMed  Google Scholar 

  • Visser J, Feuerstein I, Stangler T, Schmiederer T, Fritsch C, Schiestl M (2013) Physicochemical and functional comparability between the proposed biosimilar rituximab GP2013 and originator rituximab. BioDrugs 27:495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chow SC (2012) On the regulatory approval pathway of biosimilar products. Pharmaceuticals 5:353–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Warnke S, Von Helden G, Pagel K (2013) Protein structure in the gas phase: the influence of side-chain microsolvation. J Am Chem Soc 135:1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G et al (2014) Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 19:95–102

    Article  CAS  PubMed  Google Scholar 

  • Wiesner J, Resemann A, Evans C, Suckau D, Jabs W (2015) Advanced mass spectrometry workflows for analyzing disulfide bonds in biologics. Expert Rev Proteomics 12:115–123

    Google Scholar 

  • Williams JP, Pringle S, Richardson K, Gethings L, Vissers JPC, De Cecco M et al (2013) Characterisation of glycoproteins using a quadrupole time-of-flight mass spectrometer configured for electron transfer dissociation. Rapid Commun Mass Spectrom 27:2383–2390

    Article  CAS  PubMed  Google Scholar 

  • Wilm M (2011) Principles of electrospray ionization. Mol Cell Proteomics 10:M111–M009407

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu SL, Hühmera FR, Hao Z, Karger BL (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J Proteome Res 6:4230–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • www.alliedmarketresearch.com/biosimilars-market

  • Xie H, Chakraborty A, Ahn J, Yu YQ, Dakshinamoorthy DP, Gilar M et al (2010) Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MAbs 2:379–394

    Article  PubMed  Google Scholar 

  • Zhang A, Qi W, Singh SK, Fernandez EJ (2011) A new approach to explore the impact of freeze-thaw cycling on protein structure: hydrogen/deuterium exchange mass spectrometry (HX-MS). Pharm Res 28:1179–1193

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Hyung S-J, Ruotolo BT (2012) Ion mobility–mass spectrometry for structural proteomics. Expert Rev Proteomics 9:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Sun L, Thompson JH, Kuntumalla S, Lin HY, Larkin CJ, McGivney IV JB, Dovichi NJ (2016) Capillary zone electrophoresis tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies. Electrophoresis 37:616–622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag S. Rathore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Rathore, A.S., Singh, S.K., Nupur, N., Narula, G. (2016). Role of Proteomics in Characterization of Biosimilar Products. In: Srivastava, S. (eds) Biomarker Discovery in the Developing World: Dissecting the Pipeline for Meeting the Challenges. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2837-0_7

Download citation

Publish with us

Policies and ethics