Skip to main content

Microbial Chassis Assisting Retrosynthesis

  • Chapter
  • First Online:
Systems Biology Application in Synthetic Biology

Abstract

Synthetic biology has come a long way from constructing simple regulatory element to de novo pathway construction in heterologous host chassis. This is achieved by the transfer of the desired pathway from a rare organism to an organism that can be readily genetically engineered. These developments have great potential for application in biosynthesis of drugs, biofuels and bulk chemicals from simple and inexpensive starting material. As the complexity within a re-engineered system increases, there is an increasing need for efficient computational tools that can support them. Myriad of algorithms are available and are being developed that aid the re-engineering of pathways that help select and prioritize pathways, optimize enzyme performance, select parts for constructing the pathway, metabolic modelling and flux analysis and final integration into the chassis. This chapter gives a gist into the development of de novo pathway, the bioinformatics tools available, future challenges and research efforts needed for the implementation of synthetic biology for the production of key metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwille P, Diez S (2009) Synthetic biology of minimal systems. Crit Rev Biochem Mol Biol 44(4):223–242

    Article  CAS  PubMed  Google Scholar 

  2. Porcar M, Danchin A, de Lorenzo V, Dos Santos VA, Krasnogor N, Rasmussen S, Moya A (2011) The ten grand challenges of synthetic life. Syst Synth Biol 5(1–2):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103(2):425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA, Smith HO, Venter JC (2007) Genome transplantation in bacteria: changing one species to another. Science 317(5838):632–638

    Article  CAS  PubMed  Google Scholar 

  5. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56

    Article  CAS  PubMed  Google Scholar 

  6. McArthur GH, Fong SS (2009) Toward engineering synthetic microbial metabolism. BioMed Res Int 14:2010

    Google Scholar 

  7. Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci 93(19):10268–10273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang LY, Chang SH, Wang J (2010) How to make a minimal genome for synthetic minimal cell. Protein Cell 1(5):427–434

    Article  PubMed  PubMed Central  Google Scholar 

  9. Acevedo-Rocha CG, Fang G, Schmidt M, Ussery DW, Danchin A (2013) From essential to persistent genes: a functional approach to constructing synthetic life. Trends Genet 29(5):273–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186(23):7926–7935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. French CT, Lao P, Loraine AE, Matthews BT, Yu H, Dybvig K (2008) Large‐scale transposon mutagenesis of Mycoplasma pulmonis. Mol Microbiol 69(1):67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forsyth R, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown‐Driver V, Froelich JM, King P (2002) A genome‐wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43(6):1387–1400

    Article  CAS  PubMed  Google Scholar 

  13. Herring CD, Glasner JD, Blattner FR (2003) Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311:153–163

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci 100(8):4678–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fehér T, Papp B, Pál C, Pósfai G (2007) Systematic genome reductions: theoretical and experimental approaches. Chem Rev 107(8):3498–3513

    Article  PubMed  Google Scholar 

  16. Puchałka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, dos Santos VA (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4(10):e1000210

    Article  PubMed  PubMed Central  Google Scholar 

  17. Christian N, May P, Kempa S, Handorf T, Ebenhöh O (2009) An integrative approach towards completing genome-scale metabolic networks. Mol BioSyst 5(12):1889–1903

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L, Ginalski K, Deacon AM, Wooley J, Lesley SA, Wilson IA, Palsson B (2009) Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 325(5947):1544–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897

    Article  CAS  PubMed  Google Scholar 

  20. Holzhütter S, Holzhütter HG (2004) Computational design of reduced metabolic networks. Chembiochem 5(10):1401–1422

    Article  PubMed  Google Scholar 

  21. Brunk E, Neri M, Tavernelli I, Hatzimanikatis V, Rothlisberger U (2012) Integrating computational methods to retrofit enzymes to synthetic pathways. Biotechnol Bioeng 109:572–582

    Article  CAS  PubMed  Google Scholar 

  22. Carbonell P, Planson AG, Fichera D, Faulon JL (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cho A, Yun H, Park JHH, Lee SYY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bachmann BO (2010) Biosynthesis: is it time to go retro? Nat Chem Biol 6:390–393

    Article  CAS  PubMed  Google Scholar 

  25. Cook A, Johnson P, Law J, Mirzazadeh M, Ravitz O, Simon A (2012) Computer-aided synthesis design: 40 years on. WIREs Comput Mol Sci 2:79–107

    Article  CAS  Google Scholar 

  26. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130

    Article  CAS  PubMed  Google Scholar 

  27. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci 104(19):7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802

    Article  CAS  PubMed  Google Scholar 

  29. Kizer L, Pitera DJ, Pfleger BF, Keasling JD (2008) Application of functional genomics to pathway optimization for increased isoprenoid production. Appl Environ Microbiol 74(10):3229–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568

    Article  CAS  PubMed  Google Scholar 

  31. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Factories 9(1):1

    Article  Google Scholar 

  32. Galdzicki M, Rodriguez C, Chandran D, Sauro HM, Gennari JH (2011) Standard biological parts knowledgebase. PLoS ONE 6(2):e17005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9(2):131–137

    Article  CAS  PubMed  Google Scholar 

  34. Heneghan MN, Yakasai AA, Halo LM, Song Z, Bailey AM, Simpson TJ, Cox RJ, Lazarus CM (2010) First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. ChemBioChem 11(11):1508–1512

    Article  CAS  PubMed  Google Scholar 

  35. Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21(8):1603–1609

    Article  CAS  PubMed  Google Scholar 

  36. Rodrigo G, Carrera J, Prather KJ, Jaramillo A (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24(21):2554–2556

    Article  CAS  PubMed  Google Scholar 

  37. Chou CH, Chang WC, Chiu CM, Huang CC, Huang HD (2009) FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res 37(suppl 2):W129–W134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(11):2367–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang K, Neumann H, Peak-Chew SY, Chin JW (2007) Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat Biotechnol 25(7):770–777

    Article  PubMed  Google Scholar 

  40. Mavromatis K, Chu K, Ivanova N, Hooper SD, Markowitz VM, Kyrpides NC (2009) Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS ONE 4(11):e7979

    Article  PubMed  PubMed Central  Google Scholar 

  41. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(suppl 2):W339–W346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30(1):42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26(20):2633–2634

    Article  CAS  PubMed  Google Scholar 

  45. Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7(1):285

    Article  PubMed  PubMed Central  Google Scholar 

  46. Czar MJ, Cai Y, Peccoud J (2009) Writing DNA with GenoCAD™. Nucleic Acids Res 37(suppl 2):W40–W47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30(10):e43

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bode M, Khor S, Ye H, Li MH, Ying JY (2009) TmPrime: fast, flexible oligonucleotide design software for gene synthesis. Nucleic Acids Res 37:W214–W221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee PA, Dymond JS, Scheifele LZ, Richardson SM, Foelber KJ, Boeke JD, Bader JS (2010) CLONEQC: lightweight sequence verification for synthetic biology. Nucleic Acids Res 38:2617–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goler (2004) BioJADE: a design and simulation tool for synthetic biological systems. Master’s thesis, MIT, MIT Computer Science and Artificial Intelligence Laboratory, May 2004

    Google Scholar 

  51. Flouris M, Bilas A (2004) Clotho: transparent data versioning at the block I/O level. In MSST:315–328

    Google Scholar 

  52. Rodrigo G, Carrera J, Jaramillo A (2007) Asmparts: assembly of biological model parts. Syst Synth Biol 1(4):167–170

    Article  PubMed  Google Scholar 

  53. Weeding E, Houle J, Kaznessis YN (2010) SynBioSS designer: a web-based tool for the automated generation of kinetic models for synthetic biological constructs. Brief Bioinform 11(4):394–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) Cell designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5):159–162

    Article  Google Scholar 

  55. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738

    Article  CAS  PubMed  Google Scholar 

  56. Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM (2011) SurreyFBA: a command line tool and graphics user interface for constraint-based modeling of genome-scale metabolic reaction networks. Bioinformatics 27(3):433–434

    Article  CAS  PubMed  Google Scholar 

  57. Le Fèvre F, Smidtas S, Combe C, Durot M, d’Alché-Buc F, Schachter V (2009) CycSim—an online tool for exploring and experimenting with genome-scale metabolic models. Bioinformatics 25(15):1987–1988

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cvijovic M, Olivares-Hernández R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J (2010) BioMet toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38(suppl 2):W144–W149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P (2011) iPath2. 0: interactive pathway explorer. Nucleic Acids Res 39(suppl 2):W412–W415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bates JT, Chivian D, Arkin AP (2011) GLAMM: genome-linked application for metabolic maps. Nucleic Acids Res 38:W400–W405

    Article  Google Scholar 

  61. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pósfai G, Plunkett G, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, De Arruda M, Burland V (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046

    Article  PubMed  Google Scholar 

  63. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Smolke CD, Carrier TA, Keasling JD (2000) Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl Environ Microbiol 66(12):5399–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–537

    Article  CAS  PubMed  Google Scholar 

  66. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267

    Article  CAS  PubMed  Google Scholar 

  67. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032

    Article  CAS  PubMed  Google Scholar 

  68. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358

    Article  CAS  PubMed  Google Scholar 

  69. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  PubMed  Google Scholar 

  70. Chang MC, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3(5):274–277

    Article  CAS  PubMed  Google Scholar 

  71. Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renninger NS, Chang MC, Baker D, Keasling JD (2009) A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3. ACS Chem Biol 4(4):261–267

    Article  CAS  PubMed  Google Scholar 

  72. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Müller U, Van Assema F, Gunsior M, Orf S, Kremer S, Schipper D, Wagemans A, Townsend CA, Sonke T, Bovenberg R, Wubbolts M (2006) Metabolic engineering of the E. colil-phenylalanine pathway for the production of d-phenylglycine (d-Phg). Metab Eng 8(3):196–208

    Article  PubMed  Google Scholar 

  74. Karlsson M, Weber W (2012) Therapeutic synthetic gene networks. Curr Opin Biotechnol. doi:10.1016/j.copbio.2012.1001.1003

    PubMed  Google Scholar 

  75. Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252

    Article  CAS  PubMed  Google Scholar 

  76. Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35

    CAS  Google Scholar 

  77. Ye H, Daoud-El Baba M, Peng RW, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332:1565–1568

    Article  CAS  PubMed  Google Scholar 

  78. Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y (2011) Multiinput RNAi-based logic circuit for identification of specific cancer cells. Science 333:1307–1311

    Article  CAS  PubMed  Google Scholar 

  79. Kemmer C, Gitzinger M, Daoud-El Baba M, Djonov V, Stelling J, Fussenegger M (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol 28:355–360

    Article  CAS  PubMed  Google Scholar 

  80. Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73(24):7814–7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89

    Article  CAS  PubMed  Google Scholar 

  82. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562

    Article  CAS  PubMed  Google Scholar 

  83. Bayer TS, Widmaier DM, Temme K, Mirsky EA, Santi DV, Voigt CA (2009) Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc 131(18):6508–6515

    Article  CAS  PubMed  Google Scholar 

  84. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 1:7(1)

    Google Scholar 

  85. Prather KL, Martin CH (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol 19(5):468–474

    Article  PubMed  Google Scholar 

  86. Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329(5989):309–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailza Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Mol, M., Mandlik, V., Singh, S. (2016). Microbial Chassis Assisting Retrosynthesis. In: Singh, S. (eds) Systems Biology Application in Synthetic Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2809-7_1

Download citation

Publish with us

Policies and ethics