Skip to main content

The Role of Arrestins in the Neuroprotective Effects of Antidepressant Drugs

  • Chapter
  • First Online:
Melatonin, Neuroprotective Agents and Antidepressant Therapy

Abstract

Latest hypotheses supported by extensive data assign the pathophysiological basis of major depression to impaired neuroplasticity that is restored by antidepressant-increased neurogenesis and gliogenesis. Here we provide an overview of recent advances concerning the major role played by beta-arrestins in the regulation of the neuroprotective processes underlying the pathophysiology of mood disorders and the mechanism of action of antidepressant drugs. Beta-arrestins are multifunctional regulatory proteins involved in a myriad of essential cellular processes that impair G protein-coupled signaling pathways and at the same time promote numerous other cellular signals including a role as nuclear scaffolds. Beta-arrestins play keys roles in cellular responses to growth factors through various receptor signaling pathways, either G protein dependent or G protein independent. Whether the outcome of beta-arrestin-regulated signaling is pro-survival or proapoptotic depends on the specific configuration of the signaling system in which they act. We highlight recent findings suggesting the hypothesis that beta-arrestins might be the molecular targets for antidepressant action that mediate antidepressant antiapoptotic, neurotrophic, and neuroprotective therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP-2:

Adaptor protein-2

BAD:

Bcl-2-associated death promoter homologue

Bcl-2:

B cell lymphoma 2 apoptosis regulator

BDNF:

Brain-derived neurotrophic factor

CREB:

cAMP response element-binding protein

ERK1/2:

Extracellular signal-regulated kinase

GDNF:

Glial-derived neurotrophic factor

GPCR:

G protein-coupled receptor

GRK:

G protein-coupled receptor kinase

MAPK:

Mitogen-activated protein kinase

NT:

Neurotrophin

Trk:

Tyrosine kinase

References

  1. Stephen JP, Lefkowitz RJ. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol. 2002;12:130–8.

    Article  Google Scholar 

  2. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein coupled receptor signals. J Cell Sci. 2002;115:455–65.

    CAS  PubMed  Google Scholar 

  3. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci. 2004;27:107–44.

    Article  CAS  PubMed  Google Scholar 

  4. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. Beta-arrestin: a protein that regulates beta-adrenergic receptor function. Science. 1990;248:1547–50.

    Article  CAS  PubMed  Google Scholar 

  5. Lefkowitz RJ. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci. 2004;25:413–22.

    Article  CAS  PubMed  Google Scholar 

  6. Kristen LP, Lefkowitz RJ. Classical and new roles of beta-arrestin in the regulation of G-protein-coupled receptors. Nat Rev. 2001;2:7727–30.

    Google Scholar 

  7. Gagnon AW, Kallal L, Benovic JL. Role of clathrin-mediated endocytosis in agonist induced down-regulation of the beta2-adrenergic receptor. J Biol Chem. 1998;273:6976–81.

    Article  CAS  PubMed  Google Scholar 

  8. Oakley RH, Laporte SA, Holt JA, Bara LS, Caron MG. Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem. 1999;274:32248–57.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Barak LS, Winkler KE, Caro MG, Ferguson SSG. A central role for beta-arrestins and clathrin-coated vesicle-mediated endocytosis in beta2-adrenergic receptor resensitization. J Biol Chem. 1997;272:27005–14.

    Article  CAS  PubMed  Google Scholar 

  10. Freedman HJ, Lefkowitz RJ. Desensitization of G protein-coupled receptors. Recent Prog Horm Res. 1996;51:319–51.

    CAS  PubMed  Google Scholar 

  11. Murakami A, Yajima T, Sakuma H, McClaren MJ, Inana G. X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett. 1993;334:203–9.

    Article  CAS  PubMed  Google Scholar 

  12. Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, De Blasi A. Molecular analysis of human beta arrestin-1: cloning, tissue distribution, and regulation of expression. J Biol Chem. 1993;268:9753–62.

    CAS  PubMed  Google Scholar 

  13. Goodman OB, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996;383:447–50.

    Article  CAS  PubMed  Google Scholar 

  14. Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A. 1999;96:3712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gurevich VV, Gurevich EV. The new face of active receptor bound arrestin attracts new partners. Structure. 2003;11:1037–42.

    Article  CAS  PubMed  Google Scholar 

  16. Shenoy SK, Lefkowitz RJ. Multifaceted roles of beta-arrestins in the regulation of seven-membrane spanning receptor trafficking and signaling. Biochem J. 2003;375:503–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lefkowitz RJ, Whalen EJ. Beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol. 2004;16:162–8.

    Article  CAS  PubMed  Google Scholar 

  18. Li FT, Krueger KM, Kendall HE, Daaka Y, Fredericks ZL, Pitcher JA, Lefkowitz RJ. Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta arrestin1. J Biol Chem. 1997;272:31051–7.

    Article  Google Scholar 

  19. Lin FT, Miller WM, Luttrell LM, Lefkowitz RJ. Feedback regulation of beta arrestin1 function by extracellular signal-regulated kinases. J Biol Chem. 1999;274:15971–4.

    Article  CAS  PubMed  Google Scholar 

  20. Lin FT, Chen W, Shenoy SK, Chong M, Exum ST, Lefkowitz RJ. Phosphorylation of beta-arrestin2 regulates its function in internalization of beta2 adrenergic receptors. Biochemistry. 2002;41:10692–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;118:265–7.

    Article  CAS  PubMed  Google Scholar 

  22. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell. 1997;91:443–6.

    Article  CAS  PubMed  Google Scholar 

  23. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 1999;22:295–318.

    Article  CAS  PubMed  Google Scholar 

  24. Bothwell M. NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol. 2014;220:3–15.

    Article  CAS  PubMed  Google Scholar 

  25. Chao MV. Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat Rev Neurosci. 2003;4:299–309.

    Article  CAS  PubMed  Google Scholar 

  26. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220:223–50.

    Article  CAS  PubMed  Google Scholar 

  27. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.

    Article  CAS  PubMed  Google Scholar 

  28. Kook S, Gurevich VV, Gurevich EV. Arrestin in apoptosis. In: Gurevich VV, editor. Arrestins-pharmacology and therapeutic potential, Handbook of Experimental Pharmacology, vol. 219. Berlin: Springer; 2014. p. 309–39.

    Chapter  Google Scholar 

  29. Wagener BM, Marjon NA, Revankar CM, Prossnitz ER. Adaptor protein-2 interaction with arrestin regulates GPCR recycling and apoptosis. Traffic. 2009;10:1286–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shenoy SK, Lefkowitz RJ. Seven-transmembrane receptor signaling through β-arrestin. Sci STKE. 2005;308:cm10.

    Google Scholar 

  31. Alderton F, Rakhit S, Kong KC, Palmer T, Sambi B, Pyne S, Pyne NJ. Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. J Biol Chem. 2001;276:28578–85.

    Article  CAS  PubMed  Google Scholar 

  32. Rakhit S, Pyne S, Pyne NJ. Nerve growth factor stimulation of p42/p44 mitogen activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, β-arrestin I, and endocytic processing. Mol Pharmacol. 2001;60:63–70.

    CAS  PubMed  Google Scholar 

  33. Dalle S, Imamura T, Rose DW, Worrall DS, Ugi S, Hupfeld CJ, Olefsky JM. Insulin induces heterologous desensitization of G-protein-coupled receptor and insulin-like growth factor I signaling by down-regulating beta-arrestin-1. Mol Cell Biol. 2002;22:6272–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Povsic TJ, Kohout TA, Lefkowitz RJ. Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem. 2003;278:51334–9.

    Article  CAS  PubMed  Google Scholar 

  35. Lin FT, Daaka Y, Lefkowitz RJ. Beta-arrestins regulate mitogenic signalling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J Biol Chem. 1998;273:31640–3.

    Article  CAS  PubMed  Google Scholar 

  36. Pyne NJ, Pyne S. Receptor tyrosine kinase–G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol Sci. 2011;32:443–50.

    Article  CAS  PubMed  Google Scholar 

  37. Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, Zhang M, Bao G, Wang F, Zhang X, Yang R, Fan F, Chen X, Pei G, Ma L. A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;123:833–47.

    Article  CAS  PubMed  Google Scholar 

  38. Beaulieu JM, Caron MG. Beta-arrestin goes nuclear. Cell. 2005;123:755–7.

    Article  CAS  PubMed  Google Scholar 

  39. Castren E, Voikar V, Rantamaki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol. 2007;7:18–21.

    Article  CAS  PubMed  Google Scholar 

  40. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33:88–109.

    Article  CAS  PubMed  Google Scholar 

  41. Banasr M, Duman RS. Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets. 2007;6:311–20.

    Article  CAS  PubMed  Google Scholar 

  42. Racagni G, Popoli M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci. 2008;10:385–400.

    PubMed  PubMed Central  Google Scholar 

  43. Schmidt HD, Banasr M, Duman RS. Future antidepressant targets: neurotrophic factors and related signaling cascades. Drug Discov Today: Ther Strateg. 2008;5:151–6.

    Google Scholar 

  44. Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. Can Med Assoc J. 2009;180:305–13.

    Article  Google Scholar 

  45. Tardito D, Perez J, Tiraboschi E, Musazzi L, Racagni G, Popoli M. Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol Rev. 2006;58:115–34.

    Article  CAS  PubMed  Google Scholar 

  46. Colvis CM, Pollock JD, Goodman RH, Impey S, Dunn J, Mandel G, Champagne FA, Mayford M, Korzus E, Kumar A, Renthal W, Theobald DE, Nestler EJ. Epigenetic mechanisms and gene networks in the nervous system. J Neurosci. 2005;25:10379–89.

    Article  CAS  PubMed  Google Scholar 

  47. Duman RS, Newton SS. Epigenetic marking and neuronal plasticity. Biol Psychiatry. 2007;62:1–3.

    Article  PubMed  Google Scholar 

  48. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54:597–606.

    Article  CAS  PubMed  Google Scholar 

  49. Chen ACH, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of cAMP response element binding protein [CREB] in hippocampus produces an antidepressant effect. Biol Psychiatry. 2001;49:753–62.

    Article  CAS  PubMed  Google Scholar 

  50. Laifenfeld D, Kerry R, Grauer E, Klein E, Ben-Shachar D. Antidepressant and prolonged stress in rats modulate CAM-L1, laminin, and pCREB, implicated in neuronal plasticity. Neurobiol Dis. 2005;20:432–41.

    Article  CAS  PubMed  Google Scholar 

  51. Blendy J. The role of CREB in depression and antidepressant treatment. Biol Psychiatry. 2006;259:1144–50.

    Article  CAS  Google Scholar 

  52. Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S, Storm D, Duman RS. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci. 2002;20:4030–6.

    Google Scholar 

  53. Hunsberger J, Austin DR, Henler ID, Chen G. The neurotrophic and neuroprotective effects of psychotropic agents. Dialogues Clin Neurosci. 2009;11:333–48.

    PubMed  PubMed Central  Google Scholar 

  54. Barbany G, Persson H. Regulation of neurotrophin mRNA expression in the rat brain by glucocorticoids. Eur J Neurosci. 1992;4:396–403.

    Article  PubMed  Google Scholar 

  55. Smith MA, Makino S, Kvetnanský R, Post RM. Effects of stress on neurotrophic factor expression in the rat brain. Ann N Y Acad Sci. 1995;771:234–9.

    Article  CAS  PubMed  Google Scholar 

  56. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54:70–5.

    Article  CAS  PubMed  Google Scholar 

  57. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry J-M. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109:143–8.

    Article  CAS  PubMed  Google Scholar 

  58. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay R. Antidepressant-like effect of brain derived neurotrophic factor (BDNF). Pharmacol Biochem Behav. 1996;56:131–7.

    Article  Google Scholar 

  59. Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Tone S, Senba E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res. 1997;28:103–10.

    Article  CAS  PubMed  Google Scholar 

  60. Shirayama Y, Chen ACH, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22:3251–61.

    CAS  PubMed  Google Scholar 

  61. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539–47.

    CAS  PubMed  Google Scholar 

  62. Lindefors N, Brodin E, Metsis M. Spatiotemporal selective effects on brain-derived neurotrophic factor and trkB messenger RNA in rat hippocampus by electroconvulsive shock. Neuroscience. 1995;65:661–70.

    Article  CAS  PubMed  Google Scholar 

  63. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260:1130–2.

    Article  CAS  PubMed  Google Scholar 

  64. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hisaoka K, Nishida A, Koda T, Miyata M, Zensho H, Morinobu S, Ohta M, Shigeto Yamawaki S. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem. 2001;79:25–34.

    Article  CAS  PubMed  Google Scholar 

  66. Hisaoka K, Takebayashi M, Tsuchioka M, Maeda N, Kajitani N, Morioka N, Nakata Y, Takebayashi M. Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells. J Pharmacol Exp Ther. 2007;321:148–57.

    Article  CAS  PubMed  Google Scholar 

  67. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramaugé M, Courtin F, Pierre M. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci. 2004;24:207–16.

    Article  CAS  PubMed  Google Scholar 

  68. Takebayashi M, Hisaoka K, Nishida A, Tsuchioka M, Miyoshi I, Kozuru T, Hikasa S, Okamoto Y, Shinno H, Morinobu S, Yamawaki S. Decreased levels of whole blood glial cell line-derived neurotrophic factor [GDNF] in remitted patients with mood disorders. Int J Neuropsychopharmacol. 2006;9:607–12.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang X, Zhang Z, Xie C, Xi G, Zhou H, Zhang Y, Sha W. Effect of treatment on serum glial cell line-derived neurotrophic factor in depressed patients. Prog Neuropsychopharm Biol Psychiatry. 2008;32:886–90.

    Article  CAS  Google Scholar 

  70. Baecker PA, Lee WH, Verity AN, Eglen RM, Johnson RM. Characterization of a promoter for the human glial cell line-derived neurotrophic factor gene. Brain Res Mol Brain Res. 1999;69:209–22.

    Article  CAS  PubMed  Google Scholar 

  71. Cen X, Nitta A, Ohya S, Zhao Y, Ozawa N, Mouri A, Ibi D, Wang L, Suzuki M, Saito K, Ito Y, Kawagoe T, Noda Y, Ito Y, Furukawa S, Nabeshima T. An analog of a dipeptide-like structure of FK506 increases glial cell line-derived neurotrophic factor expression through cAMP response element-binding protein activated by heat shock protein 90/Akt signaling pathway. J Neurosci. 2006;26:3335–44.

    Article  CAS  PubMed  Google Scholar 

  72. Koyama Y, Egawa H, Osakada M, Baba A, Matsuda T. Increase by FK960, a novel cognitive enhancer, in glial cell line-derived neurotrophic factor production in cultured rat astrocytes. Biochem Pharmacol. 2004;6:275–82.

    Article  CAS  Google Scholar 

  73. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–23.

    Article  CAS  PubMed  Google Scholar 

  74. Hisaoka K, Maeda N, Tsuchioka M, Takebayashi M. Antidepressants induce acute CREB phosphorylation and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Brain Res. 2008;1196:53–8.

    Article  CAS  PubMed  Google Scholar 

  75. Tardito D, Musazzi L, Tiraboschi E, Mallei A, Racagni G, Popoli M. Early induction of CREB activation and CREB-regulating signalling by antidepressants. Int J Neuropsychopharmacol. 2009;12:1367–81.

    Article  CAS  PubMed  Google Scholar 

  76. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1988;281:1322–5.

    Article  Google Scholar 

  78. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation. Mol Cell Biol. 2000;20:1886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, Dikkes P, Korsmeyer SJ, Greenberg ME. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell. 2002;3:631–43.

    Article  CAS  PubMed  Google Scholar 

  80. Bergmann A. Survival signaling goes BAD. Dev Cell. 2002;3:607–8.

    Article  CAS  PubMed  Google Scholar 

  81. Shimamura A, Ballif BA, Richards SA, Blenis J. RSK1 mediates a MEK/MAP kinase survival signal. Curr Biol. 2000;10:127–35.

    Article  CAS  PubMed  Google Scholar 

  82. Yang X, Liu I, Sternberg D, Tang I, Galinski I, DeAngelo D, Stone R. The FLT3 internal tandem duplication mutation prevents apoptosis in interleukin-3-deprived BaF3 cells due to protein kinase A and ribosomal S6 kinase 1-mediated BAD phosphorylation at serine 112. Cancer Res. 2005;65:7338–47.

    Article  CAS  PubMed  Google Scholar 

  83. Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB, Greenberg ME. 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell. 2000;6:41–51.

    Article  CAS  PubMed  Google Scholar 

  84. Yang E, Zha J, Jockel J, Boise IH, Tompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995;80:285–91.

    Article  CAS  PubMed  Google Scholar 

  85. Marrack P, Kappler J. Control of T cell viability. Annu Rev Immunol. 2004;22:765–87.

    Article  CAS  PubMed  Google Scholar 

  86. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Köntgen F, Adams JM, Strasser A. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999;286:1735–8.

    Article  CAS  PubMed  Google Scholar 

  87. Strasser A, Harris AW, Cory S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell. 1991;67:889–99.

    Article  CAS  PubMed  Google Scholar 

  88. Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J, Marrack P. Activated T cell death in vivo mediated by proapoptotic Bcl-2 family member Bim. Immunity. 2002;16:759–67.

    Article  CAS  PubMed  Google Scholar 

  89. Grayson JM, Zajac AJ, Altman JD, Ahmed R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J Immunol. 2000;164:3950–4.

    Article  CAS  PubMed  Google Scholar 

  90. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993;75:229–40.

    Article  CAS  PubMed  Google Scholar 

  91. Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S, Harris AW. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci U S A. 1991;88:8661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi Y, Feng Y, Kang J, Liu C, Li Z, Li D, Cao W, Qiu J, Guo Z, Bi E, Zang L, Lu C, Zhang JZ, Pei G. Critical regulation of CD4+ T cell survival and autoimmunity by beta-arrestin 1. Nat Immunol. 2007;8:817–24.

    Article  CAS  PubMed  Google Scholar 

  93. Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ. Beta-arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J Biol Chem. 2009;284:8855–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Murray F, Hutson PH. Hippocampal Bcl-2 expression is selectively increased following chronic but not acute treatment with antidepressants, 5-HT1A or 5-HT2C/2B receptor antagonists. Eur J Pharmacol. 2007;569:41–7.

    Article  CAS  PubMed  Google Scholar 

  95. Murray F, Jay M, Hutson PH. The effects of chronic antidepressant administration on Bcl-2 and Bax protein expression in rat brain. FENS Abstr. 2002;1:A213.6.

    Google Scholar 

  96. Manji HK, Moore GJ, Chen G. Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry. 2000;61:82–96.

    CAS  PubMed  Google Scholar 

  97. Xu H, Steven Richardson J, Li XM. Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology. 2003;28:53–62.

    Article  CAS  PubMed  Google Scholar 

  98. Kosten TA, Galloway MP, Duman RS, Russell DS, D’Sa C. Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacology. 2008;33:1545–58.

    Article  CAS  PubMed  Google Scholar 

  99. Engel D, Zomkowski AD, Lieberknecht V, Rodrigues AL, Gabilan NH. Chronic administration of duloxetine and mirtazapine downregulates proapoptotic proteins and upregulates neurotrophin gene expression in the hippocampus and cerebral cortex of mice. J Psychiatr Res. 2013;47:802–8.

    Article  PubMed  Google Scholar 

  100. Taler M, Miron O, Gil-Ad I, Weizman A. Neuroprotective and procognitive effects of sertraline: in vitro and in vivo studies. Neurosci Lett. 2013;550:93–7.

    Article  CAS  PubMed  Google Scholar 

  101. Avissar S, Schreiber G. Beta-arrestins in depression: a molecular switch from signal desensitization to alternative intracellular adaptor functions. In: Lopez-Munoz F, editor. Neurobiology of depression, Frontiers in Neuroscience Books. New York: CRC Press; 2012. p. 371–89.

    Google Scholar 

  102. Golan M, Schreiber G, Avissar S. Regulation of G protein receptor coupling, mood disorders and mechanism of action of antidepressants. In: Sitaramayya A, editor. Signal transduction: pathways, mechanisms and diseases. Berlin: Springer; 2010. p. 63–81.

    Chapter  Google Scholar 

  103. Schreiber G, Golan M, Avissar S. Beta-arrestin signaling complex as a target for antidepressants and a depression marker. Drug News Perspect. 2009;22:467–80.

    CAS  PubMed  Google Scholar 

  104. Golan M, Schreiber G, Avissar S. Antidepressants, beta-arrestins and GRKs: from regulation of signal desensitization to intracellular multifunctional adaptor functions. Curr Pharm Des. 2009;15:1699–708.

    Article  CAS  PubMed  Google Scholar 

  105. Avissar S, Matuzany-Ruban A, Tzukert K, Schreiber G. Beta-arrestin-1 levels: reduced in leukocytes of patients with depression and elevated by antidepressants in rat brain. Am J Psychiatry. 2004;161:2066–72.

    Article  PubMed  Google Scholar 

  106. Mendez-David I, El-Ali Z, Hen R, Falissard B, Corruble E, Gardier AM, Kerdine-Romer S, David DJ. A method for biomarker measurements in peripheral blood mononuclear cells isolated from anxious and depressed mice: beta-arrestin 1 protein levels in depression and treatment. Front Pharmacol. 2013;4:1–6.

    Article  CAS  Google Scholar 

  107. Nayyar T, Alam F, Richie W, Ansah TA, Bailey RK. Reduction in peripheral blood beta arrestin1 levels during major depressive disorder in reproductive women. FASEB J. 2013;27:1100–3.

    Google Scholar 

  108. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Matuzany-Ruban A, Avissar S, Schreiber G. Dynamics of beta-arrestin1 protein and mRNA levels elevation by antidepressants in MNL of patients with depression. J Affect Disord. 2005;88:307–12.

    Article  CAS  PubMed  Google Scholar 

  110. Shenoy SK, Lefkowitz RJ. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem. 2005;280:15315–24.

    Article  CAS  PubMed  Google Scholar 

  111. Shenoy SK, Barak LS, Xiao K, Ahn S, Berthouze M, Shukla AK, Luttrell LM, Lefkowitz RJ. Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J Biol Chem. 2007;282:29549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Golan M, Schreiber G, Avissar S. Antidepressants increase β-arrestin2 ubiquitinylation and degradation by the proteasomal pathway in C6 rat glioma cells. J Pharmacol Exp Ther. 2010;332:970–6.

    Article  CAS  PubMed  Google Scholar 

  113. Golan M, Schreiber G, Avissar S. Antidepressants induced differential ubiquitination of beta arrestins 1 & 2 in mononuclear leukocytes of patients with depression. Int J Neuropsychopharmacol. 2013;16:1745–54.

    Article  CAS  PubMed  Google Scholar 

  114. Golan M, Schreiber G, Avissar S. Antidepressants elevate GDNF expression and release from C6 glioma cells in a β-arrestin1-dependent, CREB interactive pathway. Int J Neuropsychopharmacol. 2011;14:1289–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Avissar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Avissar, S., Golan, M., Feinshtein, V., Kolatkar, S., Fux, D., Schreiber, G. (2016). The Role of Arrestins in the Neuroprotective Effects of Antidepressant Drugs. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_46

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics