Skip to main content

Overview of Biogas Reforming Technologies for Hydrogen Production: Advantages and Challenges

  • Conference paper
  • First Online:
Proceedings of the First International Conference on Recent Advances in Bioenergy Research

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

In the past two decades, production of biogas from biomass degradation has drawn the attention of several researchers. Biogas is produced during anaerobic degradation of plant and animal wastes, basically consisting of higher concentrations of methane (CH4), carbon dioxide (CO2), and trace amounts of hydrogen sulfide (H2S). This biogas is an extremely potential and interesting source for the production of hydrogen gas (H2). Hydrogen gas finds tremendous quantum of applications as an essential raw material to meet the several H2 demands such as high temperature fuel cell, combustion engine, petrochemical and fertilizer industries, mostly ammonia production. Traditionally, large-scale production of H2 gas involves a thermal reforming process that uses light hydrocarbons, mainly natural gas. Biogas which is regarded as a renewable source of methane, reduces the excessive burden on natural gas. It can also help to reduce the greenhouse gas emissions. However, the present methods used for biogas reforming have several technological limitations, which may depend on the quality of biogas produced, the conversion efficiency of the process, and specific requirements for the integration of H2 production, purification, transportation, and application. This study reviews several biogas reforming methods, the types of catalyst used, the advantages and disadvantages offered by each route during the processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves HJ, Junior CB, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araujo CH (2013) Overview of hydrogen production technologies from biogas and the application in fuel cells. Int J Hydrogen Energy 38:5215–5225

    Article  Google Scholar 

  • Amin AM, Croiset E, Constantinou C, Epling W (2012) Methane cracking using Ni supported on porous and non-porous alumina catalysts. Int J Hydrogen Energy 37:9038–9048

    Article  Google Scholar 

  • Araki S, Hino N, Mori T, Hikazudani S (2009) Durability of a Ni based monolithic catalyst in autothermal reforming of biogas. Int J Hydrogen Energy 34:4727–4734

    Article  Google Scholar 

  • Araki S, Hino N, Mori T, Hikazudani S (2010) Autothermal reforming of biogas over a monolithic catalyst. J Nat Gas Chem 19:477–481

    Article  Google Scholar 

  • Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A Gen 176:159–176

    Article  Google Scholar 

  • Avraam DG, Halkides TI, Liguras DK, Bereketidou AO, Goula MA (2010) An experimental and theoretical approach for the biogas steam reforming reaction. Int J Hydrogen Energy 35:9818–9827

    Article  Google Scholar 

  • Barrai F, Jackson T, Whitmore N, Castaldi MJ (2007) The role of carbon deposition on precious metal catalyst activity during dry reforming of biogas. Catal Today 129:391–396

    Article  Google Scholar 

  • Bensaid S, Russo N, Fino D (2010) Power and hydrogen co-generation from biogas. Energy Fuels 24(9):4743–4747

    Article  Google Scholar 

  • Bereketidou OA, Goula MA (2012) Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts. Catal Today 195(1):93–100

    Article  Google Scholar 

  • Cai X, Dong X, Lin W (2006) Auto-thermal reforming of methane over Ni catalysts supported on CuO–ZrO2–CeO2–Al2O3. J Nat Gas Chem 15:122–126

    Article  Google Scholar 

  • Chang S, Li J, Liu F, Yu Z (2012) Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures. Front Environ Sci Eng China 6(6):901–906

    Article  Google Scholar 

  • Chattanathan SA, Adhikari S, McVey M, Fasina O (2014) Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion. Int J Hydrogen Energy 39:19905–19911

    Article  Google Scholar 

  • Chen Z, Grace JR, Lim CJ, Li A (2007) Experimental studies of pure hydrogen production in a commercialized fluidized-bed membrane reactor with SMR and ATR catalysts. Int J Hydrogen Energy 32:2359–2366

    Article  Google Scholar 

  • Chun YN, Song HW, Kim SC, Lim MS (2008) Hydrogen-rich gas production from biogas reforming using plasmatron. Energy Fuels 22(1):123–127

    Article  Google Scholar 

  • Corbo P, Migliardini F (2007) Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts. Int J Hydrogen Energy 32:55–66

    Article  Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  • Díaz I, Ramos I, Fdz-Polanco M (2015) Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresour Technol 192:280–286

    Article  Google Scholar 

  • Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84:869–874

    Article  Google Scholar 

  • Effendi A, Zhang ZG, Hellgardt K, Honda K, Yoshida T (2002) Steam reforming of a clean model biogas over Ni/Al2O3 in fluidized and fixed-bed reactors. Catal Today 77:181–189

    Article  Google Scholar 

  • Eltejaei H, Bozorgzadeh HR, Towfighi J, Omidkhah MR, Rezaei M, Zanganeh R et al (2012) Methane dry reforming on Ni/Ce0.75Zr0.25O2–MgAl2O4 and Ni/Ce0.75Zr0.25O2−γ-alumina: effects of support composition and water addition. Int J Hydrogen Energy 37:4107–4118

    Article  Google Scholar 

  • Esquivel-Elizondo S, Chairez I, Salgado E, Aranda JS, Baquerizo G, Garcia-Peña EI (2014) Controlled continuous bio-hydrogen production using different biogas release strategies. Appl Biochem Biotechnol 173(7):1737–1751

    Article  Google Scholar 

  • Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling: review. Int J Heat Mass Transf 48:3891–3920

    Article  Google Scholar 

  • Galvagno A, Chiodo V, Urbani F, Freni F (2013) Biogas as hydrogen source for fuel cell applications. Int J Hydrogen Energy 38:3913–3920

    Article  Google Scholar 

  • Goransson K, Soderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs. Renew Sust Energ Rev 15:482–492

    Article  Google Scholar 

  • Gupta RB (2009) Hydrogen Fuel: Production, transport and storage. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Halabi MH, De Croon MHJM, Van Der Schaaf J, Cobden PD, Schouten JC (2010) Intrinsic kinetics of low temperature catalytic methane-steam reforming and water-gas shift over Rh/CeαZr1−αO2 catalyst. Appl Catal A Gen 389(1–2):80–91

    Article  Google Scholar 

  • Herle JV, Membrez Y, Bucheli O (2004) Biogas as a fuel source for SOFC co-generators. J Power Sources 127:300–312

    Article  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  Google Scholar 

  • Horikawa MS, Rossi F, Gimenes ML, Costa CMM, Silva MGC (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21(3):415–422

    Article  Google Scholar 

  • Hotza D, Da Costa JCD (2008) Fuel cells development and hydrogen production from renewable resources in Brazil. Int J Hydrogen Energy 33:4915–4935

    Article  Google Scholar 

  • Italiano C, Vita A, Fabiano C, Laganà M, Pino L (2015) Bio-hydrogen production by oxidative steam reforming of biogas over nanocrystalline Ni/CeO2 catalysts. Int J Hydrogen Energy, 1–8. (Article in press)

    Google Scholar 

  • Iulianelli A, Manzolini G, Falco M, Campanari S, Longo T, Liguori S et al (2010) H2 production by low pressure methane steam reforming in a Pd-Ag membrane reactor over a Ni-based catalyst: experimental and modeling. Int J Hydrogen Energy 35:11514–11524

    Article  Google Scholar 

  • Kolbitsch P, Pfeifer C, Hofbauer H (2008) Catalytic steam reforming of model biogas. Fuel 87:701–706

    Article  Google Scholar 

  • Kovács KL, Kovács ÁT, Maróti G et al (2004) Improvement of biohydrogen production and intensification of biogas formation. Rev Environ Sci Biotechnol 3(4):321–330

    Article  Google Scholar 

  • Lau CS, Tsolankis A, Wyszynski ML (2011) Biogas upgrade to syngas (H2–CO) via dry and oxidative reforming. Int J Hydrogen Energy 36:397–404

    Article  Google Scholar 

  • Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrogen Energy 35:4962–4969

    Article  Google Scholar 

  • Lin KH, Chang HF, Chang ACC (2012) Biogas reforming for hydrogen production over mesoporous Ni2xCe1−xO2 catalysts. Int J Hydrogen Energy 37(20):15696–15703

    Article  Google Scholar 

  • Lin Y, Liu S, Chuanga C, Chub Y (2003) Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: experimental and modeling. Catal Today 82:127–139

    Article  Google Scholar 

  • Liu C, Zhang R, Wei S et al (2015) Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite. Fuel 157:183–190

    Article  Google Scholar 

  • Lu GQ, Diniz-Costa JC, Dukec M, Giessler S, Socolowe R, Williams RH et al (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314:589–603

    Article  Google Scholar 

  • Lucredio AF, Assaf JM, Assaf EM (2012) Reforming of a model biogas on Ni and Rh–Ni catalysts: effect of adding La. Fuel Process Tech. 102:124–131

    Article  Google Scholar 

  • Mahecha-Botero A, Chen Z, Grace JR et al (2009) Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study. Chem Eng Sci 64(16):3598–3613

    Article  Google Scholar 

  • Maluf SS, Assaf EM (2009) Ni catalysts with Mo promoter for methane steam reforming. Fuel 88:1547–1553

    Google Scholar 

  • Meyer J, Mastin J, Pinilla CS (2014) Sustainable hydrogen production from biogas using sorption-enhanced reforming. Energy Procedia 63(1876):6800–6814

    Article  Google Scholar 

  • Micoli L, Bagnasco G, Turco M (2014) H2S removal from biogas for fuelling MCFCs: New adsorbing materials. Int J Hydrogen Energy 39(4):1783–1787

    Article  Google Scholar 

  • Mosayebi Z, Rezaei M, Ravandi AB, Hadian N (2012) Auto-thermal reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area. Int J Hydrogen Energy 37:1236–1242

    Article  Google Scholar 

  • Muradov N, Smith F, T-Raissi A (2008) Hydrogen production by catalytic processing of renewable methane-rich gases. Int J Hydrogen Energy 33:2023–2035

    Google Scholar 

  • Ohkubo T, Hideshima Y, Shudo Y (2010) Estimation of hydrogen output from a full-scale plant for production of hydrogen from biogas. Int J Hydrogen Energy 35:13021–13027

    Article  Google Scholar 

  • Papadias DD, Ahmed S, Kumar R (2012) Fuel quality issues with biogas energy—an economic analysis for a stationary fuel cell system. Energy 44:257–277

    Article  Google Scholar 

  • Purwanto H, Akiyama T (2006) Hydrogen production from biogas using hot slag. Int J Hydrogen Energy 31:491–495

    Article  Google Scholar 

  • Rand DAJ, Dell RM (2008) Hydrogen energy: challenges and prospects. RSC Press, Cambridge

    Google Scholar 

  • Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8(2):149–185

    Article  Google Scholar 

  • Rogatis L, Montini T, Cognigni A, Olivi L, Fornasiero P (2009) Methane partial oxidation on NiCu-based catalysts. Catal Today 145:176–185

    Article  Google Scholar 

  • Roh HS, Eum IH, Jeong DW (2012) Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions. Renew Energy 42:212–216

    Article  Google Scholar 

  • Ruckenstein E, Hu YH (1999) Methane partial oxidation over NiO/MgO solid solution catalysts. Appl Catal A Gen 183:85–92

    Article  Google Scholar 

  • Rueangjitt N, Akarawitoo C, Chavadej S (2012) Production of hydrogen-rich syngas from biogas reforming with partial oxidation using a multi-stage AC gliding arc system. Plasma Chem Plasma Process 32(3):583–596

    Article  Google Scholar 

  • San-José-Alonso D, Juan-Juan J, Illan-Gomes MJ, Roman-Martinez MC (2009) Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl Catal A Gen, 371:54–59

    Google Scholar 

  • Sato T, Suzuki T, Aketa M, Ishiyama Y, Mimura K, Itoh N (2010) Steam reforming of biogas mixtures with a palladium membrane reactor system. Chem Eng Sci 65:451–457

    Article  Google Scholar 

  • Serrano-Lotina A, Martin AJ, Folgado MA, Daza L (2012) Dry reforming of methane to syngas over La-promoted hydrotalcite clay-derived catalysts. Int J Hydrogen Energy 37:12342–12350

    Article  Google Scholar 

  • Sharifi M, Haghighi M, Abdollahifar M (2014) Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance. Mater Res Bull 60:328–340

    Article  Google Scholar 

  • Shiga H (1998) Large-scale hydrogen production from biogas. Int J Hydrogen Energy 23(97):631–640

    Article  Google Scholar 

  • Simeone M, Salemme L, Allouis C (2008) Reactor temperature profile during auto-thermal methane reforming on Rh/Al2O3 catalyst by IR imaging. Int J Hydrogen Energy 33:4798–4808

    Article  Google Scholar 

  • Sisani E, Cinti G, Discepoli G, Penchini D, Desideri U, Marmottini F (2014) Adsorptive removal of H2S in biogas conditions for high temperature fuel cell systems. Int J Hydrogen Energy 39(36):21753–21766

    Article  Google Scholar 

  • Souza MMVM, Schmal M (2005) Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A Gen 281:19–24

    Article  Google Scholar 

  • Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35(12):4531–4535

    Article  Google Scholar 

  • Wongtanet J, Sang BI, Lee SM, Pak D (2007) Biohydrogen Production by Fermentative Process in Continuous Stirred-Tank Reactor. Int J Green Energy 4(4):385–395

    Article  Google Scholar 

  • Xu G, Chen X, Honda K, Zhang ZG (2004) Producing H2-rich gas from simulated biogas and applying the gas to a 50 W PEFC stack. AIChE J 50(10):2467–2480

    Article  Google Scholar 

  • Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy 34:6646–6654

    Google Scholar 

  • Xu J, Zhou W, Li Z, Wang J, Ma J (2010) Biogas reforming for hydrogen production over a Ni–Co bimetallic catalyst: Effect of operating conditions. Int J Hydrogen Energy 35:13013–13020

    Article  Google Scholar 

  • Yang L, Ge X, Wan C, Yu F, Li Y (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sustain Energy Rev 40:1133–1152

    Article  Google Scholar 

  • Zhai X, Ding S, Liu Z, Jin Y, Cheng Y (2011) Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity. Int J Hydrogen Energy 36:482–489

    Article  Google Scholar 

  • Zhang YHP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-Yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 2(5):e456. doi:10.1371/journal.pone.0000456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanshu Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Verma, P., Samanta, S.K. (2016). Overview of Biogas Reforming Technologies for Hydrogen Production: Advantages and Challenges. In: Kumar, S., Khanal, S., Yadav, Y. (eds) Proceedings of the First International Conference on Recent Advances in Bioenergy Research. Springer Proceedings in Energy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2773-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2773-1_17

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2771-7

  • Online ISBN: 978-81-322-2773-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics